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ABSTRACT

In blind multiuser detection for CDMA systems, the receiver knows
only the code of the user of interest, while in group-blind mul-
tiuser detection the receiver knows a subset of codes, e.g., the
in-cell users in a basestation. This paper derives bounds for the
performance of linear blind and group-blind multiuser detectors.
The bounds are derived under a number of different system as-
sumptions. The bounds show the theoretical gain by using group-
blind detectors over blind detectors, and they also show that pre-
viously developed blind and group-blind detectors are relatively
close to optimum among estimators using only second order mo-
ments. However, the bounds also show that a considerable gap
exist to optimum detectors that are not restricted to second order
moments.

1. INTRODUCTION

In blind multiuser detection for CDMA systems [1], the receiver
knows only the code of the user of interest. Using some estima-
tion technique, it then estimates a linear receiver that is able to
reduce intereference from co-channel users. In [3] this principle
was extextended to define group-blind multiuser detection, where
the receiver is assumed to know a subset (group) of codes, but not
all codes; for example known intra-cell users at a basestation with
intercell interference, or a mobile station in a UTRA-TDD system.

In a recent paper [4, 5, 6] we have analyzed the performance
of the blind and group-blind detectors developed in [2, 3]. How-
ever, this is the performance of a specific class of detectors. The
question therefore remains open: what is the theoretically best
performance that can be obtained when only one or a subset of
codes is known? And how much does the knowledge of the ad-
ditional codes in group-blind multiuser detection improve perfor-
mance theoretically? In this paper we will try to answer these
questions. The answer is not definite, but an answer that never-the-
less gives some insight into the problem. As will ne seen, the an-
swer depends strongly on what knowledge the receiver is assumed
to have, and what computational complexity can be allowed.

2. SYSTEM MODEL

We consider a simple, synchronous CDMA system with K users
of which �K are known and ~K are unknown (�� indicates quantities
belonging to the known users,~� to the unknown users), where the

received signal can be written as

r[i] =

KX
k=1

bk[i]Aksk + n[i] (1)

=

�KX
k=1

�bk[i] �Ak�sk +

~KX
k=1

~bk[i]~sk + n[i] (2)

= �S �A�b[i] + ~S ~A~b[i] + n[i]: (3)

where S are the codes Ai the amplitudes, and b[i] the transmitted
bits; n[i] is white Gaussian noise. We will assume that the codes
are normalized. In many cases we will assume that the amplitudes
are embedded in the codes, i.e. we will assume a signal model

r[i] = �S�b[i] + ~S~b[i] + n[i] (4)

We will assume that the transmitted bits bk[i] 2 f+1;�1g are iid
with P (bk[i] = +1) = P (bk[i] = �1) = 1

2
. We will not assume

any knowledge on the unknown codes ~S.

3. PREFACE: BOUNDS FOR BLIND AND GROUP-BLIND
DETECTORS

Consider the model (4) with �S known and ~S unknown, and the
transmitted bits unknown. Assume that M signal samples
r[1] : : : r[M ] are received. The question we seek to answer is:
what is the error probability in detecting the bits �b[1] : : : �b[M ]?
This question can be adressed in more generality, but in this paper
we will consider only linear detectors:

�̂bk[i] = sgn
�
ŵ
T
k r[i]

�
(5)

The linear weight vector ŵk is a function of the received sam-
ples r[1] : : : r[M ]. The ultimate question to answer would then be:
how can ŵk be chosen to minimize the error probability, and what
is this error probability? However, we will simplify this question
by dividing the estimation/detection process into two steps

1. Estimate ŵk so that it is as close as possible to a fixed linear
detector, i.e., the MMSE detector or decorrelating detector
(or combinations hereof).

2. Use this estimate in the detector and evaluate the resulting
SINR.

Thus the problem reduces to finding an as accurate as possible es-
timate of the MMSE detector or decorrelating detector from the



received samples r[1] : : : r[M ]. We can then concentrate on find-
ing Cramer-Rao bounds for the estimate ŵk. However, also this
is not quite straight forward. The problem is the model to use for
the bits bk[i]. Our model assumption is that they are iid binomial
+1;�1. Using this, it is indeed possible to calculate Cramer-Rao
bounds, which will be done in section 4.1. However, this bound
might not be very interesting, since the corresponding MLE would
be extremely complex. Thus, the problem is the much more intri-
cate problem of finding (Cramer-Rao) bounds for detectors when
the complexity is constrained. Our solution to this is to assume that
the receiver, in the estimation stage, has only limited information
about bk[i]. This information can be that 1) the exact distribution
bk[i] is not known, but only, for example, that the bk[i] have zero
mean, Efbk[i]2g = 1 and are uncorrelated, or 2) the bits bk[i] are
assumed deterministic, possibly satisfying some constraints.

4. CRAMER-RAO BOUNDS FOR LINEAR DETECTORS

The MMSE detector is given by

wk = C
�1
r sk (6)

Cr = E[rr
T
] = SA

2
S
T
+ �

2
I

= �S �A
2�S

T
+ ~S ~A

2~S
T
+ �

2
I (7)

while the decorrelating detector is given by

dk = S

�
S
T
S

�
�1
ek

=
�

�S ~S
� � �ST �S �ST ~S

~ST �S ~ST ~S

�
�1

ek (8)

The unknown part of these detectors is ~S (and ~A). We can ob-
tain the estimated detectors by inserting an estimate of ~S (and ~A).
Now, whatever (blind) method we use for estimation, there will
alsways be ambiguities in the determination of ~S. It is therefore
important to understand to what extend (6) and (8) are invariant
to ambiguities. It is easy to see that (6) is invariant to orthogonal
transformations of ~S ~A, i.e., if Q is an arbitrary ~K � ~K orthog-
onal matrix, then if we insert (~S ~A)1 = ~S ~AQ in (6) we obtain
the same result for wk. The decorrelating detector, on the other
hand, is invariant to transformations by an arbitrary non-singular
~K� ~K matrixM, i.e., if we insert ~S1 = ~SM in (8) we obtain the

same dk. In other words: to form the decorrelating detector, we
just need to know the subspace spanned by ~S, but for the MMSE
detector we also need to know the power in that subspace, what we
can call the power ellipsoid. This power ellipsoid is related to the
second order properties of ~b[i], and the MMSE detector therefore,
not unsurprisingly, cannot be determined in a completely deter-
ministic model (except with some twist, as we will see later). The
decorrelating detector, on the other hand, is completely defined in
deterministic model.

Estimation of wk or dk is thus a two step process: first ~S is
estimated (non-uniquely), and the estimate is inserted in (6) or (8).
Our approach will therefore be to calculate CRBs for ~S and use
transformation of parameters for find the CRB for wk or dk. Let
JS be the Fisher Information matrix for estimation of ~S. The CRB
for wk can then be found as

J
�1
w = H

T
J
�1
S H (9)

where

H(i;j);k =
@wk

@ ~Si;j
(10)

This is most easily found from the differential [6]

�w1 = C
�1
�
~S�~S

T
+�~S~S

T
�
C
�1
s1 (11)

from which

H(i;j);k = [C
�1~S]k;j [C

�1
s1]i + [C

�1
]k;i[~S

T
C
�1
s1]j (12)

Once J�1
w has been found, the SINR can be found from [6]

SINR =
A2

1(w
T
1 s1)

2PK

k=2
A2
k(w

T
1 sk)

2 + �2w
T
1w1 + tr(J�1

w Cr)
(13)

Now, as stated, ~S generally cannot be determined uniquely, and JS
therefore may be singular. However, wk is unique, and the CRB
can be found by by using pseudo-inverse for JS or fixing some
parameters of ~S.

4.1. Discrete Model

For simplicity, we will assume that the amplitudes of the known
users are known, so that the model (4) applies. We assume, as is
the actual model, that the bits are +1;�1 with equal probability.
The PDF for a single observation can then be written

1

2K(2��2)N=2

X
b

exp

 
�

1

2�2

NX
i=1

(xi � �Si;:�b� ~Si;:~b)
2

!
(14)

The Fisher Information matrix can be written as

Ji;j = E

"
@f(x;�)

@�i

@f(x;�)

@�j

f(x; �)2

#
(15)

The resulting CRB can only be calculated numerically, but even
then the complexity is very high. However, it can be seen that

lim
�!0

J(i;j);(k;l)�
2
= Æi;kÆj;l (16)

The CRB on wk is then

J
�1

=
�2

M
H
T
H (17)

where H is given by (12). With some calculus we then get

M

�2
J
�1

=

C
�1~S~S

T
C
�1
s
T
1C

�2
s1 +C

�2
s
T
1C

�1~S~S
T
C
�1
s1

+C
�1~S~S

T
C
�1
s1s

T
1C

�2
+C

�2
s1s

T
1C

�1~S~S
T
C
�1

(18)

The MLE corresponding to this model is extremely complex. It
has to try all 2KM possible bits. However, the present problem is
somewhat similar to blind source separation, and some reasonably
efficient (both computationlly and in terms of performance) exist
[8] that suitably modified can be applied to (group) blind multiuser
detection.



4.2. Estimation From the Covariance Matrix

The detectors developed in [2] and [3] are all based on estimating
the covariance matrix, and then use this for estimating the detector.
In [7] an asymptotic bound is given for estimation from the covari-
ance matrix (or other statistics). In our case this bound is given as
follows. Define

[J](i;j);(k;l) =
@ �C

@[~S]i;j

T

�T
�1 @ �C

@[~S]k;l
; (19)

with �C = vec(C) and �T = Mat(T), where �T is the covariance
matrix of the covariance matrix estimate. The asymptotic covari-
ance of the estimate of ~S is then lower bounded by J�1, and it is
also shown in [7] that this bound is asymptotically tight. In [6] it
was proven that the estimated covariance matrix is assymptotically
Gaussian with covariance matrix

M [T]i;j;k;l = Mcovf[Ĉ]i;j ; [Ĉ]k;lg

= [C]i;k[C]j;l + [C]i;l[C]j;k

�2

KX
�=1

[S]i;�[S]j;�[S]k;�[S]l;� (20)

The derivatives needed in (19) are

@[C]i;j

@[~S]m;n

= Æi;m[~S]j;n + Æj;m[~S]i;n (21)

@C

@[~S]m;n

= em~s
T
n + ~sne

T
m (22)

The bound (19) can also be interpreted as a CRB. Using the
fact that the covariance matrix estimate is asymptotically Gaus-
sian, we can calculate an asymptotic CRB using the standard for-
mulas for Gaussian noise:

[J(i;j);(k;l) =
1

2
tr

�
�T
�1 @ �T

@[~S]i;j

�T
�1 @ �T

@[~S]k;l

�

+
@ �C

@[~S]i;j

T

�T
�1 @ �C

@[~S]k;l
(23)

(notice that we just have one sample of the estimated covariance
matrix)

In this case both the covariance matrix itself and the covari-
ance of the covariance T depends on the unknown parameters.
However, since we are estimating ~S from a single sample of Ĉ,
the covariance of the covariance matrix T therefore cannot be es-
timated; in addition, T is actually a fourth order moment, so using
this is not strictly a second order approach.

We can overcome these problems by modifying our model.
Assume the detector does not know (or utilize) that T depends on
~S; however, it still knows the noise might not be white. In that
case, the Fisher information matrix becomes block diagonal, and
the CRB for ~S does not depend on T. We then arrive at (19).

4.3. Deterministic Model

Consider now the transmitted bits b[i] as deterministic, continuous
variables. The problem is then the joint estimation of ~S and b[i],
and we can calculate CRB for this problem. As mentioned in the
introduction, to form the MMSE detector, ~S must be determined
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Fig. 1. Median performance. CRB1: Section 4.1, CRB2: Section
4.2, CRB3: Section 4.3.

except for an orthogonal rotation. However, in the deterministic
model, only the subspace of ~S can be identified. We therefore
modify the deterministic model somewhat: now assume that b[i]
is assumed deterministic, but satisfying kb[i]k22 = K, i.e. that it
is lying on a hypersphere (notice that the actual bits satisfy this).
Then ~S can be identified except for an orthogonal rotation, and we
can therefore calculate the CRB for the MMSE detector. Define

�r = [r
T
[1] : : : r

T
[M ]]

T (24)
�b = [b

T
[1] : : :b

T
[M ]]

T (25)
�B[i] = [b1[i]I; b2[i]I : : : bK [i]I] (26)
�B = [B

T
[1] : : :B

T
[M ]]

T (27)
�b = [b1[1]; b2[1] : : : bK [1] : : : b1[M ] : : : bK [M ]]

T (28)
�S = I
 S = diag(S;S : : :S) (29)

�s = [s1;1; s2;1 : : : sN;1; s1;2 : : : sN;K ]
T (30)

And similarly for known and unknown users. Since the bits are
contrained to have unit norm, we reparametrize them as

b
T
[m] =

2
4�
vuutK �

KX
i=2

b2i [m]; b2[m]; b3[m] : : : bK [m]

3
5

and define �[m] = [b2[m]; b3[m]; : : : ; bK [m]]T . We can write the
received vector in two ways

�r = �S �A�b = ��S ��A��b+ ~�S ~�A~�b+ �n (31)

�r = ��B ��A��s+ ~�B ~�A~�s+ �n (32)

We can then write the Fisher Information matrix as

F =

�
F11 F12

F
T
12 F22

�
(33)

where

F11 =
@�b

@�

T

�A�S
T �S �A

@�b

@�
(34)



= diag

�
@b[1]

@�[1]

T

AS
T
SA

@b[1]

@�[1]
(35)

: : :
@b[M ]

@�[M ]

T

AS
T
SA

@b[M ]

@�[M ]

�
(36)

F12 =
@�b

@�

T

�A�S
T ~�B (37)

=

2
664

@b[1]

@�[1]

T
AS

T ~B[1]

...
@b[M]

@�[M]

T
AS

T ~B[M ]

3
775 (38)

F22 = ~�B
T ~�B (39)

The inverse is then given by

F
�1

=

�
F
�1
11 + F�1

11 F12D
�1
F
T
12F

�1
11 F

�1
11 F12D

�1

D
�1
F
T
12F

�1
11 D

�1

�
(40)

where

D = ~�B
T ~�B�

MX
m=1

~B
T
[m]SA

@b[m]

@�[m]
� (41)

�
@b[m]

@�[m]

T

AS
T
SA

@b[m]

@�[m]

�
�1

@b[m]

@�[m]

T

AS
T ~B[m] (42)

Notice that the CRB for ~S is given by D�1. Here

@b[m]

@�[m]
=

�
b
0[m]

I

�
(43)

b
0

[m] = �
1q

K �

PK

i=2
b2i [m]

[b2[m] : : : bK [m]] (44)

= �b1[m][b2[m] : : : bK [m]]: (45)

With this we get

@b[m]

@�[m]

T

AS
T
= AK�1S

T
K�1 �A1b1[m]bK�1[m]s

T
1 : (46)

This inverse should be averaged over all bit sequences. This can
either be done numerically or asymptotically (M ! 1). In the
present paper we do the avaraging numerically.

5. NUMERICAL RESULTS

The bounds were calculated for a system with a spreading gain of
16 and 6 known users and 3 unknown users. All users had power
one, and the SNR was 15dB. Random codes were used, and the
statistics were calculated over 100 random code sets. The bounds
are compared in Fig. 1 and 2 with the performance of the esti-
mators developed in [2] and [3] using the performance analysis of
[4, 5]. All bounds are for the group-blind detectors, except ’blind
CRB2’.
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