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ABSTRACT

In this paper, we devise a new subspace method for es-

timating the di�erential time delay of a signal received

at two separated sensors as well as the frequencies of

the source signal, assuming that it consists of multiple

sinusoids. The time delay and frequency estimates are

related to the eigenvalues and eigenvectors of a matrix

obtained from the covariances of the received signals.

The e�ectiveness of the proposed algorithm is demon-

strated via computer simulations using sinusoidal sig-

nals as well as real speech data.

I. Introduction

Time delay estimation between signals received at spa-

tially separated sensors [1] and sinusoidal frequency es-

timation [2] are two research topics which have been

widely studied for many years. Recently, the problem

of joint time delay and frequency estimation of sinu-

soidal signals has also attracted considerable attention.

Application examples for this problem include speech

enhancement and pitch estimation using a microphone

array [3], synchronization in CDMA systems [4], anal-

ysis of thalamocortical seizure pathways [5] and FSK

demodulation using multiple segments [6].

Let the discrete-time sinusoidal signals received at

two sensors be

r1(n) = s(n) + q1(n); and

r2(n) = s(n�D) + q2(n); n = 0; 1; � � � ; N � 1

(1)

where

s(n) =

PX
m=1

�m exp(j!mn) (2)

The source signal s(n) is modeled by a sum of P com-

plex sinusoids where the amplitudes f�mg are unknown

complex-valued constants and the normalized radian

frequencies f!mg are distinct. Without loss of gener-

ality, we assign !1 < !2 < � � � < !P . It is assumed

that P is known a priori or an accurate estimate of P

has been obtained [7]. The additive noises q1(n) and

q2(n) are uncorrelated zero-mean complex white Gaus-

sian processes with variances �2q1 and �
2
q2
, respectively.

The parameter D represents the di�erence in arrival

times at the two receivers and N is the number of sam-

ples collected at each channel. Our goal is to estimate

both the time di�erence of the received signals and the

frequencies of their constituent components.

When s(n) is a single sinusoid, a discrete-time Fourier

transform based approach [8] can be used to achieve

the optimum time delay and frequency estimation. For

P > 1, Sherman et al [5] had presented an ESPRIT

algorithm [9] to estimate D while a generalized Yule-

Walker solution was suggested in [6] to determine f!mg

separately. In this paper, a novel subspace method for

joint estimation of the time delay and frequencies is de-

veloped. Basically, the estimation procedure involves

�nding the eigenvalues and eigenvectors from the prod-

uct of the cross-correlation matrix of the two received

signals and the pseudoinverse of the correlation matrix

of s(n). Simulation results show that the mean square

errors of the time delay and frequency estimates are

close to their corresponding Cram�er-Rao lower bounds

(CRLBs). Applicability of the proposed method for

a voiced speech arriving at spatially separated micro-

phones is also demonstrated.

II. The Proposed Algorithm

Using the received signals, we form the following set of

vectors

X1(k) = [r1(k); r1(k + 1); � � � ; r1(k +M � 1)]T

X2(k) = [r2(k); r2(k + 1); � � � ; r2(k +M � 1)]T
(3)

where k = 0; 1; � � � ;K � 1 with K = N �M + 1 and T

denotes the transpose operation. The parameter M is

the length of each vector andK has a value lies between

P +1 and N�P +1 so that the span of any K of X1(k)

or X2(k) has no rank less than P . Substituting (1) and

(2) into (3) gives

X1(k) = A(!)S(k) +Q1(k)

X2(k) = A(!)�(!)S(k) +Q2(k)

(4)



where

A(!) = [a1; a2; � � � ; aP]

am =
�
1; ej!m ; � � � ; ej!m(M�1)

�T
; m = 1; 2; � � � ; P

S(k) =
�
�1e

j!1k; �2e
j!2k; � � � ; �P e

j!P k
�T

Q1(k) = [q1(k); q1(k + 1); � � � ; q1(k +M � 1)]
T

Q2(k) = [q2(k); q2(k + 1); � � � ; q2(k +M � 1)]
T

�(!) = diagfe�jD!1; e�jD!2 ; � � � ; e�jD!P g

(5)

We can see that the time delay and frequency informa-

tion is embedded in the Vandermonde matrix A(!) as

well as the diagonal matrix �(!), which have dimen-

sions of M � P and P � P , respectively.

Using (4) and (5), the auto-correlation matrix of

X1(k) can be shown to be

R11
def
= E

�
X1(k)X

H
1 (k)

�
= A(!)RsA

H(!) + �
2
q1
I (6)

where

Rs = E[S(k)SH(k)] (7)

has full rank because the P sinusoidal frequencies are

distinct. The notationsE andH denote the expectation

and Hermitian transposition, respectively, and I is the

M �M identity matrix. Similarly, the cross-correlation

matrix of X1(k) and X2(k) can be written as

R21
def
= E

�
X2(k)X

H
1 (k)

�
= A(!)�(!)RsA

H (!) (8)

In practice, R11, R21 and �
2
q1

are unknown and they

must be determined from the N measurements of r1(n)

and r2(n). Consistent estimates of R11 and R21 are

given by

R̂11 =
1

K

K�1X
k=0

X1(k)X
H
1 (k)

R̂21 =
1

K

K�1X
k=0

X2(k)X
H
1 (k)

(9)

while the noise power estimate �̂2q1 is found by averag-

ing the (M � P ) smallest eigenvalues of R̂11. A good

estimate of the noise-free covariance matrix of X1(k),

that is, A(!)RsA
H(!), denoted by Ĉ11, is of the form

Ĉ11 =

PX
i=1

(�i � �̂
2
q1
)ViV

H
i (10)

where �1 > �2 > � � � > �M and fVig are a set of or-

thonormal vectors which are obtained from the eigen-

value decomposition of estimate of (R̂11 � �̂
2
q1
I) =PM

i=1 �iViV
H
i . It can be easily shown that the pseu-

doinverse of Ĉ11 is

Ĉ
y

11 =

PX
l=1

�
�1
l VlV

H
l (11)

Since spanfa1; a2; � � � ; aPg = spanfV1;V2; � � � ;VPg in

the absence of noise and from (8), (10)-(11), we can

express the term R̂21Ĉ
y

11A(!) as follows,

R̂21Ĉ
y

11A(!)

� A(!)�(!)
�
RsA

H(!)
� PX
l=1

�
�1
l VlV

H
l A(!)

= A(!)�(!)

 �
AH (!)A(!)

��1
AH (!)

�

PX
i=1

�iViV
H
i

!
�

PX
l=1

�
�1
l VlV

H
l A(!)

= A(!)�(!)
�
AH (!)A(!)

��1

�

 
AH (!)

PX
i=1

ViV
H
i A(!)

!

= A(!)�(!)
�
AH (!)A(!)

��1 �
AH (!)A(!)

�
= A(!)�(!) (12)

As N !1 and when noise is absent, R̂21 ! R21 and

Ĉ11 ! A(!)RsA
H (!), am will be the same as the

eigenvector of R̂21Ĉ
y

11 associated with the eigenvalue

e
�j!mD, for m = 1; 2; � � �; P . Nevertheless, under other

situations, reasonable estimates of am and fe�j!mDg

can still be obtained from R̂21Ĉ
y

11. In our study, we

use the following steps to �nd D and f!mg:

1. Compute the P largest eigenvalues of R̂21Ĉ
y

11,

�̂1; �̂2; � � � ; �̂P . Hence �nd the corresponding P

eigenvectors, denoted by fâmg, m = 1; 2; � � � ; P .

2. Let âm = [âm(1); âm(2); � � � ; âm(M )] � âm(1) ��
1; ej!̂m ; � � � ; ej!̂m(M�1)

�T
where !̂m denotes the

estimate of !m. The frequency estimate is ob-

tained by minimizing a least squares cost functionPM�1

l=1 (l!m� 6 (âm(l+1)=âm(1)))
2 where 6 (v) rep-

resents the phase angle of v, and it is given by

!̂m =

6

M�1X
l=1

l 6

�
âm(l + 1)

âm(1)

�

M (M � 1)(2M � 1)
(13)



3. Based on the P eigenvalues and frequency esti-

mates, the estimated time delay D̂ is evaluated as

D̂ = (�1=P )
PP

m=1
6 (�̂m)=!̂m.

Notice that if s(n) is a periodic signal, then the P com-

plex sinusoids in (2) are harmonically related and the

frequencies must satisfy

!m = m!1; m = 1; 2; � � � ; P (14)

It is expected that the accuracies of f!mg and D should

be increased by utilizing the harmonic signal informa-

tion in the estimation process. In this case, instead of

using (13), we can minimize another least squares cost

function of the form
PP

m=1

PM�1

l=1 (lm!1 � 6 (âm(l +

1)=âm(1)))
2 to estimate the fundamental frequency, !1,

as follows,

!̂1 =

36

PX
m=1

M�1X
l=1

lm6

�
âm(l + 1)

âm(1)

�

M (M � 1)(2M � 1)P (P + 1)(2P + 1)
(15)

III. Simulation Results & Conclusions

Computer simulations were conducted to evaluate the

time delay and frequency estimation performance of

the proposed method in the presence of white Gaus-

sian noise. All results provided were averages of 200

independent runs. In the �rst test, the source sig-

nal s(n) was a sinusoidal signal of the form s(n) =

�1e
j!1n+�2e

j!2n with �1 = 1, �2 = e
�j�=4, !1 = 0:2�

rad/s and !2 = 0:4� rad/s, which was a periodic sig-

nal. The sampling interval was 1 s and the time delay

D was selected to be 1.7 s. We assigned �
2
q1
= �

2
q2

and

di�erent signal-to-noise ratios (SNRs) were obtained by

proper scaling of the noise sequences. The number of

samples used was N = 200 while the vector length M

had a value of 4. Figures 1 to 3 plot the mean square er-

rors (MSEs) of the frequency and time delay estimates

versus SNR, together with the corresponding CRLBs.

The frequency variances for !1 and !2 obtained from

the conventional ESPRIT method [9] were also included

for comparison. In Figures 1 and 2, it can be seen that

the two variants of the proposed algorithm, that is, with

and without exploiting the periodic property of s(n),

were superior to the ESPRIT method in frequency es-

timation. However, it is noted that the performance of

the proposed method will be greatly improved if (15) is

employed instead of (13). At high SNRs, the variances

of the frequency estimates based on (15) were roughly

6 dB above the CRLB for frequency. For example, the

MSE of !̂1 was �63.5 dB at SNR = 20 dB and this

implies that !̂1 2 (!1 � 2 � 10�3
; !1 + 2 � 10�3) with

a probability of 99.75%, assuming that the frequency

error was Gaussian distributed. While in Figure 3, we

observe that for SNR � 0 dB, the MSE of D̂ was larger

than the corresponding CRLB by approximately 2 dB

but there was no obvious improvement when the har-

monic signal information was utilized.

In the second experiment, the application of the pro-

posed algorithm for joint time delay and pitch estima-

tion of voiced speech received at two microphones was

investigated. The signal s(n) was now a portion of an

Cantonese word and its waveform is depicted in Figure

4. The voiced speech was sampled at 16 kHz. This

speech frame was shifted by one sampling interval to

obtain another frame to simulate the speech data from

a second microphone. We used six complex sinusoids

(P = 6) or three real sinusoids to model the speech [10]

while the parameters N and M were chosen to be 320

and 10, respectively. We assumed the frequencies of

the speech were harmonically related and thus (15) was

used in the frequency estimation procedure. The MSEs

of the time delay estimates of the proposed algorithm

as well as the direct cross-correlation (DCC) and gen-

eralized cross correlation (GCC) methods [1] are shown

in Figure 5. We see that the subspace method outper-

formed both the DCC and GCC for a wide range of

SNRs. On the other hand, the estimated normalized

pitch frequency was 0.11 rad/s which agreed with the

fundamental frequency of the voiced speech.

To conclude, a subspace algorithm for joint time de-

lay and frequency estimation of sinusoidal signals re-

ceived at two separated sensors has been proposed. The

time delay and frequency estimates are derived using

the eigenvalues and eigenvectors of a matrix obtained

from the covariances of the received signals. It is shown

that for periodic signals, the time delay and frequency

estimation performances are inferior to the CRLBs by

only a few dB. The proposed method has also been

successfully applied in joint pitch and delay estimation

using two microphones.

References
[1] G.C.Carter, Coherence and Time Delay Estimation:

An Applied Tutorial for Research, Development, Test

and Evaluation Engineers, IEEE press, 1993

[2] P.Stoica and R.Moses Introduction to Spectral Anal-

ysis, Prentice-Hall, 1997

[3] X.Qian and R.Kumaresan, "Joint estimation of time

delay and pitch of voiced speech signals," Conf. Rec. of

the 29th Asilomar Conf. Signals, Systems & Comput-

ers, vol.1, pp.735-739, 1995

[4] S.R.Dooley and A.K.Nandi, "Adaptive time delay

and frequency esitmation for digital signal synchro-

nization in CDMA systems," Conf. Rec. of the 32th

Asilomar Conf. Signals, Systems & Computers , vol.2,

pp.1838-1842, 1998

[5] D.L.Sherman, Y.C.Tsai, L.A.Rossell, M.A.Mirski

and N.V.Thakor, "Narrowband delay estimation for

thalamocortical epileptic seizure pathways," Proc.



IEEE Int. Conf. Acoust. Speech, Signal Processing,

vol.5, pp.2939-2942,May 1995, Detroit, Michigan, USA

[6] J.A.Sills and Q.R.Black, "Frequency estimation from

short pulses of sinusoidal signals," Proc. IEEE MIL-

COM '96, vol.3, pp.979-983, 1996

[7] H.T.Wu, J.F.Yang and F.K.Chen, "Source number

estimators using transformed Gerschgorin radii," IEEE

Trans. Signal Processing, vol.43, pp.1325-1333, 1995

[8] H.C.So, "Delay estimation using sinusoidal signals,"

Proc. IEEE Int. Conf. Acoust. Speech, Signal Process-

ing, vol.5, pp.3168-3171, June 2000, Istanbul, Turkey

[9] R.Roy, T.Kailath, "ESPRIT - Estimation of signal

parameter via rotational invariance techinques," IEEE

Trans. Acoust. Speech, Signal Processing, vol.37, no.7,

pp.984-995, July 1989

[10] R.J.Mcaulay and T.F.Quateri, "Speech analy-

sis/synthesis based on a sinuosoidal representation,"

IEEE Trans. Acoust. Speech, Signal Processing, vol.34,

no.4, pp.744-754, April 1986

−20 −10 0 10 20 30 40
−120

−100

−80

−60

−40

−20

0

20

dashed: ESPRIT

dotted : Proposed Algorithm using (13)

dashdot: Proposed Algorithm using (15)
solid : CRLB 

SNR (dB)

M
ea

n 
S

qu
ar

e 
F

re
qu

en
cy

 E
rr

or
 (

dB
)

Figure 1: MSEs of !̂1 versus SNR for periodic signal
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Figure 2: MSEs of !̂2 versus SNR for periodic signal
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Figure 3: MSEs of D̂ versus SNR for periodic signal
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Figure 4: Waveform of voiced Cantonese speech
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Figure 5: MSEs of D̂ versus SNR for voiced speech


