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ABSTRACT

In this paper, we devise a new subspace method for es-
timating the differential time delay of a signal received
at two separated sensors as well as the frequencies of
the source signal, assuming that it consists of multiple
sinusoids. The time delay and frequency estimates are
related to the eigenvalues and eigenvectors of a matrix
obtained from the covariances of the received signals.
The effectiveness of the proposed algorithm is demon-
strated via computer simulations using sinusoidal sig-
nals as well as real speech data.

I. Introduction

Time delay estimation between signals received at spa-
tially separated sensors [1] and sinusoidal frequency es-
timation [2] are two research topics which have been
widely studied for many years. Recently, the problem
of joint time delay and frequency estimation of sinu-
soidal signals has also attracted considerable attention.
Application examples for this problem include speech
enhancement and pitch estimation using a microphone
array [3], synchronization in CDMA systems [4], anal-
ysis of thalamocortical seizure pathways [5] and FSK
demodulation using multiple segments [6].

Let the discrete-time sinusoidal signals received at
two sensors be

ri(n) = s(n) + q1(n), and

ra(n) = s(n— D)+ ¢2(n), n=0,1,---,N—-1

where
s(n) = Z O exp(jwmn) (2)

The source signal s(n) is modeled by a sum of P com-
plex sinusoids where the amplitudes {a,, } are unknown
complex-valued constants and the normalized radian
frequencies {wp,} are distinct. Without loss of gener-
ality, we assign wy < ws < --- < wp. It is assumed
that P i1s known a priori or an accurate estimate of P
has been obtained [7]. The additive noises ¢;(n) and

q2(n) are uncorrelated zero-mean complex white Gaus-
sian processes with variances 0'51 and 0'52, respectively.
The parameter D represents the difference in arrival
times at the two receivers and N is the number of sam-
ples collected at each channel. Our goal is to estimate
both the time difference of the received signals and the
frequencies of their constituent components.

When s(n) is a single sinusoid, a discrete-time Fourier
transform based approach [8] can be used to achieve
the optimum time delay and frequency estimation. For
P > 1, Sherman et al [5] had presented an ESPRIT
algorithm [9] to estimate D while a generalized Yule-
Walker solution was suggested in [6] to determine {wy, }
separately. In this paper, a novel subspace method for
joint estimation of the time delay and frequencies is de-
veloped. Basically, the estimation procedure involves
finding the eigenvalues and eigenvectors from the prod-
uct of the cross-correlation matrix of the two received
signals and the pseudoinverse of the correlation matrix
of s(n). Simulation results show that the mean square
errors of the time delay and frequency estimates are
close to their corresponding Cramér-Rao lower bounds
(CRLBs). Applicability of the proposed method for
a voiced speech arriving at spatially separated micro-
phones is also demonstrated.

II. The Proposed Algorithm

Using the received signals, we form the following set of
vectors

Xl(k’) = [7“1(]47),7“1(]47+ 1), . ',7“1(]47—|— M — 1)]T

(3)
Xz(k’) = [7“2(]47),7“2(]47+ 1), . ',7“2(]47—|— M — 1)]T

where k=0,1,--- K —1with K =N-M+1land T
denotes the transpose operation. The parameter M is
the length of each vector and K has a value lies between
P+1and N—P+1 so that the span of any K of Xq(k)
or Xz(k) has no rank less than P. Substituting (1) and
(2) into (3) gives

X1(k) = A(w)S(k) + Qu(k) ”
4
Xa(k) = A(w)AW)S(k) + Qa(k)



where
A((.J) — [alaaza"'aaP]
_ f W jwam (M —1) T _
am_[l,e] eyl ] ,m=12--. P
S(k) = [alejwlk,azejwk, . ~,ozpej°"Pk]T

(5)

Qu(k) = [qr(k), qr(k + 1), qr(k + M = 1))

Q. (k) = cqa(k + M —1)]"

Aw) = diag{e=/Pws e=iPwz ...

[q2(k), q2(k + 1), - -
e—ijP}

We can see that the time delay and frequency informa-
tion is embedded in the Vandermonde matrix A(w) as
well as the diagonal matrix A(w), which have dimen-
sions of M x P and P x P, respectively.

Using (4) and (5), the auto-correlation matrix of
X1 (k) can be shown to be

R = X (HX] (k)]
= AWRAT (W) +0) 1 (6)
where
R, = E[S(k)S™ (k)] (7)

has full rank because the P sinusoidal frequencies are
distinct. The notations F and H denote the expectation
and Hermitian transposition, respectively, and I is the
M x M 1dentity matrix. Similarly, the cross-correlation
matrix of Xq(k) and Xz(k) can be written as

R, < E[Xz(k’)xllq(k)]

= AWAWRA (W) (8)

In practice, Rqy1, Rs; and 0'51 are unknown and they
must be determined from the N measurements of r1(n)

and ry(n). Consistent estimates of Ry, and Rg; are
given by
| K-l
Rii=— Y Xi(k)XZ(k
n=3 l;) 1 (k)XY (k)
1 K-1 (9)
Roi = — > Xo(k)XH(k
0= l;) 2(k) X7 (k)

while the noise power estimate &2 is found by averag-

q1
ing the (M — P) smallest eigenvalues of Ry;. A good
estimate of the noise-free covariance matrix of Xy (&),

that is, A(w)Rs A (w), denoted by C11, is of the form

P

C, = Z(/\i_

i=1

o5, )Vivi (10)

where Ay > Ay > -+ > Ay and {V;} are a set of or-

thonormal vectors which are obtained from the eigen-

value decomposition of estimate of (Rj; — &511) =
M

iz MViV

doinverse of Cq; 1s

. It can be easily shown that the pseu-

P
cl, Z v, v (11)
Since span{aj,az, - ,ap} = span{Vy, Vy -+ Vp}in
the absence of noise and from (8), (10)-(11), we can

express the term Roq CJ{lA(w) as follows,
RZlé‘{lA(w)
(R A" (w

~ AW)A(W) Z/\ WV, VEA(W)

= A<w>A<w>(<AH<w>A<w>>‘1AH<w>

'ZP:/\z’VinH 'ZP:/\l_llelHA(w)
— AWAW) (A (w >A<w>>‘1
(AH ZV VAW ))
= AWAW) (AT (W)AW) T (AT (W) AW))
= A(w)A(w) (12)

As N — oo and when noise is absent, f{zl — Ro1 and
Cy — A(W)R,AH (W), ay, will be the same as the
eigenvector of RZIC% associated with the eigenvalue
e=dwmD for m=1,2,--, P. Nevertheless, under other
situations, reasonable estimates of ay, and {e~/“=P}
can still be obtained from f{zl(ﬂl. In our study, we
use the following steps to find D and {w,, }:
1. Compute the P largest eigenvalues of Rlen,
/\1,/\2, . ,/\p. Hence find the corresponding P
eigenvectors, denoted by {a;,}, m=1,2,--- P.

2. Let am = [am(1),am(2), - am(M)] ~ amn(l) -
[1, efém eja’m(M_l)]T where w,, denotes the
estimate of w,,. The frequency estimate is ob-
tained by minimizing a least squares cost function

M 1w — £ (am (141) @ (1)))2 where Z(v) rep-
resents the phase angle of v, and it is given by

M-1

am(l+1)
_6;“< )
YT TM(M = 1)(2M — 1) (13)



3. Based on the P eigenvalues and frequency esti-
mates, the estlmated time delay D is evaluated as

D= (=1/P) 0, £(An) fiom.

Notice that if s(n) is a periodic signal, then the P com-
plex sinusoids in (2) are harmonically related and the
frequencies must satisfy
m=12--- P (14)
It is expected that the accuracies of {w,,} and D should
be increased by utilizing the harmonic signal informa-
tion in the estimation process. In this case, instead of
using (13), we can minimize another least squares cost
function of the form Zm 1 ;\41 1(lmw1 — Llam (! +
1)/am(1)))? to estimate the fundamental frequency, wi,
as follows,

Wy = My,

P M-1

(1 +1
wE y ()
S Nr—neM-nPErnePsn )

III. Simulation Results & Conclusions
Computer simulations were conducted to evaluate the
time delay and frequency estimation performance of
the proposed method in the presence of white Gaus-
sian noise. All results provided were averages of 200
independent runs. In the first test, the source sig-
nal s(n) was a sinusoidal signal of the form s(n) =
Q1671 4 ape?¥2? with oy = 1, ay = e_j”/4, w; = 0.27
rad/s and we = 0.47 rad/s, which was a periodic sig-
nal. The sampling interval was 1 s and the time delay
D was selected to be 1.7 s. We assigned 0'51 = 0'52 and
different signal-to-noise ratios (SNRs) were obtained by
proper scaling of the noise sequences. The number of
samples used was N = 200 while the vector length M
had a value of 4. Figures 1 to 3 plot the mean square er-
rors (MSEs) of the frequency and time delay estimates
versus SNR, together with the corresponding CRLBs.
The frequency variances for w; and ws obtained from
the conventional ESPRIT method [9] were also included
for comparison. In Figures 1 and 2, it can be seen that
the two variants of the proposed algorithm, that is, with
and without exploiting the periodic property of s(n),
were superior to the ESPRIT method in frequency es-
timation. However, it is noted that the performance of
the proposed method will be greatly improved if (15) is
employed instead of (13). At high SNRs, the variances
of the frequency estimates based on (15) were roughly
6 dB above the CRLB for frequency. For example, the
MSE of w; was —63.5 dB at SNR = 20 dB and this
implies that w; € (w1 — 2 x 1073wy + 2 x 1073) with
a probability of 99.75%, assuming that the frequency
error was Gaussian distributed. While in Figure 3, we
observe that for SNR > 0 dB, the MSE of D was larger
than the corresponding CRLB by approximately 2 dB

but there was no obvious improvement when the har-
monic signal information was utilized.

In the second experiment, the application of the pro-
posed algorithm for joint time delay and pitch estima-
tion of voiced speech received at two microphones was
investigated. The signal s(n) was now a portion of an
Cantonese word and its waveform is depicted in Figure
4. The voiced speech was sampled at 16 kHz. This
speech frame was shifted by one sampling interval to
obtain another frame to simulate the speech data from
a second microphone. We used six complex sinusoids
(P = 6) or three real sinusoids to model the speech [10]
while the parameters N and M were chosen to be 320
and 10, respectively. We assumed the frequencies of
the speech were harmonically related and thus (15) was
used in the frequency estimation procedure. The MSEs
of the time delay estimates of the proposed algorithm
as well as the direct cross-correlation (DCC) and gen-
eralized cross correlation (GCC) methods [1] are shown
in Figure 5. We see that the subspace method outper-
formed both the DCC and GCC for a wide range of
SNRs. On the other hand, the estimated normalized
pitch frequency was 0.11 rad/s which agreed with the
fundamental frequency of the voiced speech.

To conclude, a subspace algorithm for joint time de-
lay and frequency estimation of sinusoidal signals re-
ceived at two separated sensors has been proposed. The
time delay and frequency estimates are derived using
the eigenvalues and eigenvectors of a matrix obtained
from the covariances of the received signals. It is shown
that for periodic signals, the time delay and frequency
estimation performances are inferior to the CRLBs by
only a few dB. The proposed method has also been
successfully applied in joint pitch and delay estimation
using two microphones.
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Figure 1: MSEs of @ versus SNR for periodic signal
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Figure 2: MSEs of @ versus SNR for periodic signal
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3: MSEs of D versus SNR for periodic signal
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Figure 4: Waveform of voiced Cantonese speech
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