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ABSTRACT coefficients, it is well known that the choice of Wavelet se-

. . ries outperforms the choice of Fourier or cosine series in
Recent years have seen the development of signal denois; ; : . .
. . he representation of piecewise-smooth signals (see e.g.[2,
ing algorithms based on wavelet transform. It has been

. - .~ "3]) : thanks to the wavelets time-localization, the decay of
shown that thresholding the wavelet coefficients of a noisy - ; . . ST
: - ~7 wavelet coefficients in the neighborhood of discontinuities
signal allows to restore the smoothness of the original sig- . . -
o ” is faster that the decay of Fourier coefficients. However,
nal. However, wavelet denoising suffers of a main draw- ; C o
} ) T . ._wavelet thresholding method is still a regularization pro-
back : around discontinuities the reconstructed signal is

smoothed, exhibiting pseudo-Gibbs phenomenon. We Con_cess and the estimator presents oscillations in the vicinity

sider the problem of denoising piecewise smooth si nalsOf signal’s discontinuities. Such oscillations are very close
: pr N 9p !9 to the Gibbs phenomena exhibited by Fourier thresholding,
with sharp discontinuities. We propose to apply a traditional

- ) . [thoughth local f Il li .
wavelet denoising method and to restore the denoised s,lgna'?lt ough they are more local and of smaller amplitude. They

: 2 T . are called pseudo-Gibbs phenomena.
using a total variation minimization approach. This second
step allows to remove th.e Qibbs phgnomena and therefore To partially reduce these artifacts, a workaround has
to restore sharp dlSCOﬂt.Inl.'JItleS, vyhlle the other .strucFures been proposed by Coifman and Donoho [4] : their trans-
are pre§erved. The main |nn.0\'/at'|on'of our algorithm is to lation invariant thresholding algorithm consists in applying
constrain th.e 'total variation mlnlmlzatlon by the knowledge the thresholding process to translated versions of the orig-
of the remaining Wavglet coefficients. In this way, we makg inal signal, and in averaging them. It comes down to ap-
sure that the restoration process does nqt d'e'terlorgte the Ir‘li)ly the classical threshold process on a frame wavelet ex-
formatlon that hgs bgen considered as S|gn|f|gant in the de'pansion, the dyadic wavelets [5], instead of an orthogonal
noising step. With this approach we substgntlally improve \avelet basis. If the resulting procedure, calfinCycle
the performance of classpal wavelet ('jen0|sm'g algorlthms,by Coifman and Donoho, really reduces the pseudo-Gibbs
both in terms of SNR and in terms of visual artifacts. phenomena compared to the origilesuShrink procedure,
they are still highly visible. The method we are present-
1. INTRODUCTION AND BACKGROUND ing in this paper performs a far better artifact reduction,
so that in most cases the pseudo-Gibbs phenomena simply
Since the beginning of wavelet transforms in signal process-vanish. Let us mention another approach of artifact free
ing, it has been noticed that wavelet thresholding is of con- wavelet denoising recently introduced by Dragotti and Vet-
siderable interest for removing noise from signals and im- terli in [6]. These authors propose to apply a vector thresh-
ages. The method consists to decompose the noisy data intolding in place of the classical scalar thresholding, and to
an orthogonal wavelet basis, to suppress the wavelet coefreplace remaining vectors by the closest footprint obtained
ficients smaller than a given amplitude (using a so-called as the significant wavelet coefficients generated by singu-
soft or hard thresholding), and to transform the data back larities of piecewise polynomial functions. In this way, they
into the original domain. Such non-linear thresholding esti- ensure a denoising free of pseudo-Gibbs phenomena. How-
mator can be computed in any orthogonal basis (as Fourierever the computation and the recording of all footprints are
or cosine), and Donoho and Johnstone have proved that itpretty heavy, and the extension of this method to signals of
performance is close to an ideal coefficient selection andhigher dimensions, such as images, a challenging program.
attenuation [1]. And since the efficiency of the estimator The method we are introducing keeps a low complexity and
depends on the rate of decay of the sorted decompositiorcan be easily extended to image denoising.



Since classical wavelet thresholding does not introduceremoval, a great SNR enhancement. Let us mention that the
artifacts in regular parts of a signal, we focus our attention theory developed here is valid with any orthogonal bases,
on denoising piecewise smooth signals with sharp disconti-thought we are presenting it in the framework of wavelet
nuities. The method we are introducing is working in two bases.
steps :

e Apply a traditional wavelet denoising method, such 2. WAVELET DENOISING
as a hard thresholding, and record the location of the
remaining coefficients in a maj/. Donoho recom-
mends to use the soft thresholdiiguShrink instead
of the hard one in order to reduce the artifacts [7].
Although the algorithm we are presented can be used®
with Visushrink, it is mathematically relevant with a — ) )
hard thresholding only. ¢ Z < Vik > Vik M

Let (v¥;,1);kex be an orthogonal basis of wavelets on the
interval I = [a, b] as described by Cohen, Daubechies and
Vial [11], so that we can write any signale L?(I) as the
um of the serie

JkeK

¢ Restore the denoised signal using a total variation min-yhere
imization approach, subject to the constraint that the
restored signal has the same remaining wavelet coef- <u i >= /u(x)%k(x)dx, 2)
ficients than the denoised one. This step removes the T

pseudo-Gibbs phenomena and restores sharp discont et us define the hard thresholding operatao be
tinuities, while the other structures are preserved.

z if|z] > A

The idea of using a total variation minimization method T(x) = { 0 if o] < A 3)
to restore a noisy signal has been introduced for the first
time by Rudin, Osher and Fatemi in [8], in the context of In the case of soft thresholding, the operatos
image denoising. They propose to minimize the total vari- .
ation of the signal subject to a fidelity constraint, so that 7(x) { g_ Sgn(@)A :]: ||z|| E :\\’ (4)
the restored signal has a lower total variation while it re- ‘
mains close to the original one. The noise is reduced while The denoised signal using wavelet thresholding is simply
discontinuities are preserved, in contrast with classical reg-
ularization techniques where discontinuities are smoothed. ug = Z (< u, Y >)U; k- (5)
Following this work, several constraints and functionals to jkeK
minimize have been proposed (see e.g. [9, 10]). . '

We do not propose to use the total variation in order to The mapi/ is defined by
remove the noise : the first step of our method, the wavelet M={(,k) €K : |<utr>]|>A} (6)
denoising, performs this task very well and even better than
the total variation approach. We propose to reconstruct alf the noisy signal can be written = u + w, with @ the
signal with minimal total variation such that its wavelet co- noiseless signal to estimate ann additive Gaussian white
efficients are the same than the remaining wavelet coeffi-noise of standard deviatian the threshola is often set to
cients of the denoising signal. This main idea results simply ov/2log N, N being the number of samples of the digital
in the following remark : if step one is correctly performed, signal: inthat case the estimator is the best in the min-max
the unknown original noiseless signal has the same wavelesense asv tends to infinity [1].
coefficients than the denoised one in the location given by
the mapl/. Traditional wavelet denoising algorithm makes 3. CONSTRAINED TOTAL VARIATION
the choice of setting the coefficients outsideto 0, leading MINIMIZATION
oscillations in the vicinity of discontinuities. Because of the
strong dependency between wavelet coefficients in the orig-The total variation of any unidimensional signah 1 is
inal noiseless signal, this is far from an optimal choice. We
propose to set the coefficients outsitleto the values that
minimize the total variation of the reconstructed signal, so J(v) = ?E}; > lv(en) = (i) (7)
that occurence of oscillations is discouraged. =1

The following details steps one and two of our method. where the supremum is on all sequen¢es$ such that: <
Then, we present the algorithm used to minimize the total z; < z2 < ... < 21 < b. LetU be the constraint space
variation. We end with some experimental results which )
show that our approach allows, in addition to the artifact U=A{v:VY(j,k)eM <v,vjp>=<u,vjr >} (8)



This is an affine space with direction given by the linear
space

Up={v : Y(j, k) € M, < v,¢;, >=0}. (9)
We have to solve the variational problem
find v* € U such that/(u™) = 11615 J(v). (10)

SinceJ is a convex function ant a convex set, any solu-
tion «* of (10) is given by
),

for P the affine projector ontd’ that minimizes the dis-
tance.

(11)

4. ALGORITHM

The algorithm is a straightforward discrete approximation
of the previous equations. Wavelet denoising is a simple
process which involves a FWT (Fast Wavelet Transform)
followed by thresholding and by an inverse FWT.

We numerically solve the variational problem using a
well-known gradient descent algorithm combining a projec-
tion on the constraint :

aJ
Uk+1 = P (uk — tka—v(uk)) s (12)
whereu, € U is the denoised signal by wavelet threshold-
ing and¢; > 0 is the step chosen in order to obtain the
convergence. Leb, be the orthogonal projection onié,.
Since we have

P(v) = u+ Py(v — u), (13)

we can write

aJ

Up1 = U — 1 P (a—v(uk)

)

and this equation can be easily computed : the siaJ kur)

is projected ontd/, using the FWT, followed by tﬁe can-
cellation of coefficients belonging t&/ and by an inverse
FWT.

The overall complexity of the algorithm remains of the
same order than the FWT, thatl§ V), which is lower than
theSpinCyclecomplexity O (N log N)). However, because

(14)

of the fixed number of iterations needed by the gradient de-

5. EXPERIMENTAL RESULTS

We have implemented the algorithm using the tools given
by the free MegaWave?2 software [12].

We present two experiments. The first one consists in
denoising a synthetic signal containing a sharp discontinu-
ity (a step) and two discontinuities of second order (a ramp).
A Gaussian white noise has been added following the model
u = % + w. Figure 1 displays the signal Figure 2 the
signalu, Figure 3 the wavelet-denoised sigmaland Fig-
ure 4 the restored signal, for ¥ = 10000. The estimator
uy, is far better thang, either in terms of SNR or visually.
Fair results are still obtained with much lowelas low as
k ~ 10). The second experiment is obtained from a natural
noisy signak:, which follows our assumption of a piecewise
smooth noiseless signal The signak: in Figure 5 corre-
sponds to a line of a digital image, which is a snapshot of an
office. Figure 6 shows the signa} and Figure 7 the signal
ug. ONnce again, the visual aspectqfis far better than.
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Fig. 1. Original step-ramp functiofa.
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Fig. 2. Noised step-ramp function, obtained by adding to
@ a Gaussian white noise of= 0.05. SNR=18.9 db.

6. CONCLUSION

We have presented a general framework to perform artifact-
free denoising with wavelets. The method was explained

and illustrated in the case of unidimensional signals, but it

can be easily extended to signals of higher dimensions, and
in particular to images for which the piecewise-smooth as-

sumption is highly relevant. A slight modification of the

scent, the effective computational time is greater than theconstraint may also be performed in order to achieve restora-

one associated t&inCycle, at least for signals of reason-
able size.

tion of signals and images that have been compressed within
an orthogonal basis.
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Fig. 3. Denoised step-ramp functiom, , obtained by
wavelet hard thresholding. SNR£.0 db. Normalized Total
Variation NTV=0.0023.
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Fig. 4. Denoised step-ramp functian,, obtained by our
method. SNR&7.8 db. NTV=0.0010.
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Fig. 5. Real signak extracted from a line of a digital image
(view of an office).
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