
  NONLINEAR SMOOTHING FILTER USING ADAPTIVE RADIAL CLUSTERING  
 

                  Irene Yu -Hua Gu 
          Dept. of Signals and Systems, 
          Chalmers University of Technology, Sweden 
          irenegu@s2.chalmers.se 

                          Vasile Gui  
       Dept. of Electronics and Communications, 
       Polytechnic University of Timisoara, Romania  
       gui@hermes.ee.utt.ro

 
 

ABSTRACT 
A novel adaptive nonlinear filter is proposed aimed at smoothing 
homogenous regions while maintaining image structures. The 
filter can be utilized as a pre-processing tool in image 
segmentation and edge estimation for improving the results. 
Several special features are introduced to the filter, including 
using local adaptive radial clustering and pixel filtering to exclude 
the influence of outliers and to maintain image structures; using 
steepest-ascent method to iteratively update pixels to the 
nearest clusters obtained by mean-shift; and introducing highly 
parallel processing by using random seed samples and their 
associated data blocks which enables fast processing and the 
global optimum solution of the nonlinear filter. Experiments 
were done on images of various complexities, and good results 
were obtained. Evaluations of the filter were also done in terms 
of edge preserving and image segmentation. 
  
1. INTRODUCTION 
The importance of edges in visual perception and computer 
vision is widely recognized. Edge enhancement is also useful in 
pre-processing of image segmentation where edge information 
can be used to obtain partitions corresponding to real objects, or 
meaningful parts of the objects in the image. Edge enhancement 
and image smoothing are often conflicting demands that cannot 
be well addressed in the framework of linear filtering. Since linear 
smoothing filters may result in edge blurring, it is often desirable 
to use nonlinear filters. Many nonlinear smoothing techniques 
have been investigated [1-5]. A commonly exploited idea is to 
weight pixels according to their confidence of being 
representative for the estimate. The difference often arises from 
the way the confidence is obtained. In order statistic L-filter, 
weighted ordered intensities in the neighbourhood region are used 
to modify the pixel value. In edge-preserving smoothing filter 
[10], a set of neighbourhood regions of the same central pixel is 
defined and the region having the smallest intensity variance is 
used to modify the centre pixel value. In nonlinear diffusion 
[4,9], weights are inversely proportional to the magnitude of the 
intensity gradient at the currently processed location. Sharp 
boundaries separating homogeneous regions are produced, 
however, the computational cost is high. Offset filtering [3] 
offers a fast alternative where the centre of filter kernel is placed 
away from the assumed edges with an offset depending on local 
image geometry. Another alternative is to use adaptive non-local 
filtering [6], where estimation of offset vector field is separated 

from the actual image filtering by means of pixel permutation. 
Good results were reported however shaded areas were often 
split into several flat regions separated by artificial boundaries. It 
is desirable that shaded regions be treated differently from 
blurred edges. Another problem in many clustering-based 
segmentation approaches is that pixels are first mapped to a 
feature space, followed by clustering in the feature space 
globally [3,7]. This may cause deviations of clusters due to 
grouping pixels from different neighbourhood regions. To 
alleviate this problem, it is desirable that clustering be performed 
on a local basis.  
 
Motivated by the above, we propose a novel edge-preserving 
nonlinear smoothing filter based on adaptive local clustering. The 
filter is implemented as L parallel processes to data blocks 
associated with randomly selected seed samples. Due to random 
selection, no pixel or block is particularly favoured. This results 
in an equivalence of series and parallel processing, and enables 
the convergence of the filter to its optimum solution. The 
processing is local and is constrained to a limited set of pixel 
intensities so that outliers are excluded in clustering and pixel 
modification (filtering). Further, iterative pixel filtering uses 
steepest-ascent method guided by mean-shift clustering theory. 
This step also prevents pixel intensity drifting towards the 
cluster values in shaded regions.  
 
2. IMAGE MODELING AND NONLINEAR SMOOTHING  
Let the observed image f(x,y) be modelled as the superposition of 
three parts: the ‘homogeneous’ part 1( , )g x y , the structural part 

(e.g. edges) 2( , )g x y , and the ‘noise’ part n(x,y) , 

   1 2( , ) ( , ) ( , ) ( , )f x y g x y g x y n x y= + +    (1)  

The nonlinear smoothing under consideration is to find the ‘best’ 
estimate (under a selected criterion), such that the resulted 
image ˆ( , )f x y  is the edge preserving smoothing of the original 

1 2
ˆ( , ) ( , ) ( , ) ( , )* ( , ) ( , )f x y h x y f x y h x y g x y kg x y≈ +@ e  (2) 

where h(x,y) is a smoothing filter, ande  is an operator. To the 
structured image part, the desired output from the filter is 

2 ( )k g r , i.e., the filter maintains image structures however 

allows a scale difference. To the homogeneous image part, the 
desired output of the filter is a local region i dependent constant 

1( , ) * ( , ) ih x y g x y c= . Obviously, this is associated with a 

nonlinear filtering problem.  



Let us consider the following criterion function on a local image 
window ,x yD  centred at (x,y),  

,
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The best estimation is to find ˆ( , )f x y  and the operator e , such 
that ( , )x yε  in (3) is minimized. For analysis purpose, let us first 
consider several special cases of linear filter, where e  in (2) is a 

convolution. For m = 2, the estimate ˆ( , )f x y  is associated with 
the arithmetic mean of the samples within the windows ,x yD . 

The filter is a LS estimator which works well for images with 
homogeneous intensities, however, edges are blurred. For m = 1, 
the estimate is the median of the samples within the windows. 
Unlike the mean filter, the median filter does less blur to the 
edges and is more robust. Further, increasing m leads to an 
increased influence of outliers on the estimated values, causing an 
increased deviation to the desired filter. Obviously, linear filters 
cannot obtain the desired solution. Since the outliers are likely to 
be associated with image structures for noise-free images (or 
noisy images with high SNRs), we propose a novel nonlinear 
smoothing filter based on adaptive radial clustering. Some special 
features introduced to this filter are: (a) The filter avoids using 
and modifying outliers in local regions in order to maintain the 
structures in the image (detailed in Sections 5 and 6); (b) The 
filtering is an iterative process using the steepest-ascent method 
on an adaptively selected radial set of local data. Under the 
general framework of mean-shift theory, this guarantees that the 
output pixel values are shifted along the gradient direction 
towards the nearest homogeneous region. The clustering is 
performed locally on an adaptively selected radial set of data to 
prevent the deviation of cluster prototypes (in Sections 5 and 6); 
(c) A highly parallel filtering process is introduced, where seed 
samples, randomly re-generated for image partitions, are 
associated with L data blocks. This enables fast processing and 
the global optimum of the nonlinear filter (detailed in Section 4). 
 
3.  SYSTEM DESCRIPTION  
The proposed algorithm for nonlinear smoothing filter can be 
subdivided into: (a) Finding seed samples for L-parallel 
processing. This is done by randomly choosing seed samples for 
image partitions. (b) L-parallel processing is then applied to local 
regions. For each data block, local adaptive radial clustering 
method is introduced (b.1) to find the cluster prototypes and 
(b.2) to modify pixel values subsequently towards the desired 
outputs. The number of local clusters is set to be adaptive 
according to the dynamic range of pixel intensities. To avoid 
influence of outlier pixels, clustering and filtering are only 
applied to pixels whose intensities are within a radial distance to 
the estimated cluster prototypes. The details are described in the 
following sections. 
 
4.  SELECTING SEEDS FOR PARALLEL PROCESSING   

In order to facilitate parallel processing, random seed samples are 
generated for each image partition. This step is introduced for 
fast parallel processing and achieving global optimum of the 
nonlinear filter. The image is first partitioned into small and fixed 
blocks, whose centers are shifted according to the seed samples. 
Assuming the size of the block is W by W, the shift [ ,  s ]T

x ys  in 

block location is determined by the seed samples, randomly 
generated from a 2D uniform distribution [1 W]. Seed samples 
are then associated with rectangular data blocks ijB , with up-left 

corner coordinators  
  , [ ( 1)   s ( 1) ] ,  1 ,T

i j x yb s j W i W i j M= + − + − ≤ ≤    (4) 

where (i,j) are indices of the block, and L=MxM. Seed samples 
are re-generated for new image partitions. Therefore, no pixel, or 
block is particularly favoured. This is necessary to guarantee the 
equivalence of parallel processing and the conventional serial 
processing (i.e., one pixel is processed at each time). 

 
5. STEEPEST-ASCENT METHOD FOR PIXEL FILTERING 
AND ITS ASSOCIATION TO MEAN-SHIFT   
Apart from eliminating the influence of outliers through adaptive 
radial clustering (described in Section 6), a novel pixel 
modification (filtering) algorithm based on the steepest-ascent 
method is introduced. This stage is applied to guide pixel 
modification along the gradient direction towards the nearest 
cluster. It also prevents pixel intensity drifting towards the 
cluster prototypes in shaded regions. Within the intensity set 

1 2[ -   ]c r c r+ , a pixel value is iterated towards the nearest local 

cluster prototype lc  using  

   ( 1) ( ) ( )( , ) ( , ) ( ( , ))n n n
lf x y f x y c f x yα+ = + −   (5) 

where n is the iteration number, α   is small positive number (set 
to be slowly decreasing with iterations) which controls the 
convergence speed and the steady state performance. This 
filtering method can be interpreted under the theoretical 
framework of mean-shift [8]. Mean-shift is an efficient 
nonparametric method for estimating the gradient of density in 
multivariate distributions. Let z be the m dimensional feature 
vector, Sz a small spherical window of radius r centred at z, and 
p(z) the estimated probability density function (pdf). The 
gradient of pdf in the window centre is shown to be proportional 
to the difference between the local mean and the centre value 

within the window, i.e., 
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mean-shift always points to the direction of the maximum 
increase in density. This can be used to locate local high density 
regions in a feature space by means of the steepest-ascent 
algorithm, and to subsequently modify pixel values along that 
direction. In our case, the feature space used for pixel 
modification is the intensity histogram of pixels in the data 
block. Given an initial pixel from the histogram, the algorithm 
finds the closest high density region to this point within the 
radius of the searching window. The choice of the radius is 



important: A smaller radius can better eliminate the influence of 
outliers to the estimates at the expense of an increased risk of 
finding too ‘local’ extrema. In the next section, a new version of 
mean-shift clustering using adaptive radius is proposed. 
 
6. ADAPTIVE LOCAL RADIAL CLUSTERING AND 
FILTERING  
According to (2), the filter should have little influence 
to 2( , )g x y . The filter should leave some outliers untouched to 

preserve image structures (e.g. edges and lines), while filtering 
out other outliers (e.g. transition pixels from blurred edges). In 
order to obtain a selective behaviour in the presence of different 
kinds of outliers, the following three-stage process is proposed.  
 
6.1.  Determining the Number of Local Clusters 
The number of local clusters is chosen adaptively according to 
the dynamic range of the intensity histogram. The intensity 
histogram in each block is first computed. The actual number of 
local clusters is then decided according to the histogram. For each 
block, let the maximum and minimum intensity values be fmax 
and fmin. If fmax - fmin < r0, where r0  is a threshold, then the region 
is considered as homogeneous or low contrast, and the number of 
clusters is set to one. Otherwise, a maximum number of clusters 
K is chosen. In our experiments, the maximum number of 
clusters is set to 2 due to the small block size used. 
 
6.2.  Estimating Local Cluster Prototypes 
Local cluster prototypes are initially determined by K-nearest 
neighbourhood method. The median of absolute differences 
(MAD) within each cluster is then computed, which is a robust 
estimator of local variance. Mean-shift iterations with radius 
ri=MAD i are then carried out, starting from the initial clusters 

lc . This leads to a so-called ‘partial local segmentation’. The 

role of this stage is to define local partitions, so that pixels with 
different labels are modified differently. Further, each cluster is 
obtained from a high confidence subset of pixels. Note that the 
confidence is adaptively defined through the variable radius ri.    
 
6.3.  Pixel Filtering  
After initial clustering, the iteration process is only applied to 
pixels within the intensities of 1 2[ -   ]c r c r+  in the block, 

according to the following distance measure 
   ( , ) ( , )  -  /         1,2l l ld x y f x y c MAD l= =          (6) 

where lMAD  is the mean absolute difference in the  lth cluster. 

If 1 2( , ) ( , )d x y d x y≥ , then pixel  f(x,y)  is iterated using (5) 

towards 2c , otherwise towards 1c . Pixels outside the range 

1 2[ -   ]c r c r+  are excluded from filtering. A favourable effect is 

that pixels from outside this range, possibly belonging to 
undetected small clusters, are not affected. Hence, cluster 
validation problem is alleviated.  
 

The proposed algorithm is briefly summarized in Table 1. 
 

Initialise: iteration number n=0; 
(a). Generate seeds and the associated blocks; Set n=n+1; 
(b). L-parallel processing for each data block:  
         Compute intensity histogram;  
         Determine the number of clusters, initialise the prototypes; 
         Iteratively update prototypes by adaptive r mean-shift; 
         Iteratively modify pixels according to (5) and (6);  
(c). Go back to (a), until either no block has been modified,  
       or  n exceeds the maximum iteration number pn n> . 

    Table 1.  Algorithm for nonlinear smoothing filter 
 
7.  RESULTS AND EVALUATIONS 
Experimental were performed on a set of images with various 
degree of complexities, and good results were obtained. As an 
example, Fig.1 shows an original ‘flower’ image and the image 
resulted from the proposed filter. The parameters used in the 
experiments were W=9, r0=9 and np=20. It is observed that 
homogeneous regions are smoothed and edges are well preserved. 
It is also observed that the amount of details preserved is mainly 
dependent on the selection of window W in the filter, as shown 
in the example of Fig.2. Larger W leads to less details, however, 
most visible structures in images were found to be remarkably 
stable with respect to W. Another interesting property is that 
increasing W has little effect on the shape of the structures, e.g., 
no visible corner rounding. The results also showed that there is 
a good accuracy in edge localization, which were partly 
contributed by the removing of outliers. 
To evaluate the edge preserving property of the filter, 
comparisons were performed by applying a simple edge 
detection algorithm both to the original and filtered images. 
Examples are included in Fig.3. The edge detection method 
consisted of 2nd-order image derivatives (i.e., Laplacian of 
Gaussian) followed by thresholding. The results showed that the 
proposed filter indeed performs well in terms of edge preserving 
smoothing.  
To verify the benefit of the filter to image segmentation, 
experiments were conducted by first using the proposed filter 
followed by a very simple segmentation method. As an example, 
Fig.4 shows the segmentation results with and without applying 
the proposed filter. All results showed that texture regions were 
well segmented after applying the proposed filter (e.g. (4a) and 
(4c), although there were a few spurious regions, partially due to 
the defect in our boundary extraction algorithm. Further, we 
observed that the proposed filter indeed produced partial image 
segmentation, especially for less complex images and in the high 
contrast regions. Preliminary comparisons to [9] indicated that 
the proposed method has obtained equal or improved results.  
Further, it is observed that the program is fast. The executing 
time was 25 Sec. for a 256×256 ‘Lena’ image on a single 133 



MHz 486 PC. The processing time was slightly increased with 
increased W. 
 
8.  CONCLUSIONS  
A novel nonlinear smoothing filter is presented. Using the image 
model and the criterion of the filter, the newly introduced filter 
strategies, which include constrained radial intensity range in 
clustering, steepest-ascent method for iterative pixel filtering and 
parallel re-generated random blocks, are shown to be effective in 
eliminating the influence of outliers, modifying pixels along the 
mean-shift towards the closest cluster, and enabling highly 
parallel processing. Our experimental results have also shown 
that the method has indeed generated good image smoothing 
meanwhile well preserving or enhancing the image structures. 
Therefore, the proposed method can be used for edge-preserving 
image smoothing. In addition, it may be used as pre-processing 
step for improving the results of image segmentation and edge 
estimation. The method is only suitable for high SNR images. 
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       (1.a) original image                    (1.b) filtered image                                (2.a) edges from  (1.b)               (2.b) edges from (1.a)         
        Fig.1   Original and the filtered images. 

                                                                            
     (3.a) filtered (W=15)              (3.b) filtered image (W=33)                    (2.c) edges from filtered image  (2.d) edges from original image    
          Fig.3  filtered image using different window size W.                           Fig.2. Nonlinear smoothing for improving edge detection.       

                          
       (4.a) segmented image          (4.b) boundaries from (4.a)         (4.c) segmented image              (4.d) boundaries from (4.c) 
                           Fig.4  Nonlinear filtering followed by image segmentation and boundary extraction
  


