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ABSTRACT

A new Adaptive Step Size control algorithm is proposed to be
combined with the Sign Algorithm for use in complex-valued
adaptive filters for application to QAM communications. The
algorithm, ASSSA, is fully analyzed to yield a set of difference
equations for calculating the transient behavior, hence the steady-
state performance, of the filter convergence in terms of excess
mean sqguared error (EMSE). An approximation method for
multilevel QAM is further proposed to reduce the amount of
computation. The results of experiment with some examples
verify the effectiveness of the proposed ASSSA in significantly
improving the convergence rate, and also show that the
theoretical convergence is in good agreement with that of
simulations, which validates the analysis.

1. INTRODUCTION

Quadrature Amplitude Modulation (QAM) is a basic modulation
scheme most widely adopted in wired and wireless digital
communications.

In the wired communications, the QAM is applied to
voiceband modems, xDSL (a family of high speed digital
subscriber line transmission systems) modems, cable modems for
CATV networks, etc. In the wireless world, terrestrial and
satellite digital radio communications, terrestrial digital TV
broadcasting, mobile communications including the next
generation CDMA, etc., are al based on the QAM technol ogy.

Adaptive filtering constitutes the core technology in Digital
Signa Processing, and plays a key role in the QAM
communications as well. In fact, adaptive filters are used for
echo cancellation, channel distortion equalization, antenna array
control, etc. In QAM applications, the adaptive filters must be
2D, or complex-valued, because the baseband signal of the QAM
is expressed as a set of in-phase and quadrature components.

In practical adaptive filtering systems, the Least Mean Square
Algorithm (LMSA) is widely used as the tap weight adaptation

algorithm. However, the Sign Algorithm (SA), that is derived
from the LMSA, is dso attractive for its simplicity in
implementation, robustness against disturbances and assured
convergence [1]-[3]. While the SA outperforms the LMSA in
impulse noise environment, the drawback of using the SA in
certain applications appears to beits fairly slow convergence rate
as compared with the LMSA [4]. Some methods for improving
the convergence rate of the SA using an adaptively controlled
step size for tap weight adaptation have been proposed [5] [6].

Based upon the above observations, this paper proposes and
analyzes a new Adaptive Step Size Sign Algorithm (ASSSA) for
use in complex-valued adaptive filters, particularly focusing on
application to digital QAM communications.

2. ASSSA FOR COMPLEX-VALUED
ADAPTIVE FILTERS

2.1 Tap Weight Update Equation for the SA

Fig.1 depicts the basic structure of an FIR adaptive filter for
identification of an unknown system, where
a(n=a®(n)+ja'(n)  complex-valued reference input

vector (length N),

complex-valued tap weight vector

(N taps),

d(n)=d®(n) +jd' (n)=h ()" a(n) + v (n) (1)
desired signal (complex),

h(n)=h®(n)+jh'(n) unknown system response vector
(complex),

e(m=e%(n)+je'(n)=dn)—c(n) "a(n) 3
error signal (complex),

v(n) = vR(n) +jv'(n) additive noise (complex),

n timeinstant, N number of taps, and j = V-1,

c(m=c®(n) +c' (n)

where () Rand (+)'indicate real and imaginary part of a
complex number, respectively, and ( » ) ' denotes transpose with
complex conjugation or Hermitian.

The tap weight update equation for the complex-valued Sign
Algorithm is given by



a(n)

Ref. Input
Adaptive Unknown

Filter System

c(n) h(n)
i g l * Noise

O) ( )_
g § + v

Error e (n) d(n)

Fig.1 Structure of adaptive filter for system identification.

c(ntl)=c(n) + a.sgn{ e(n)}Da(n), ©)]
in which o . is real-valued step size for tap weight adaptation,
sgn (+ ) issignumfunction, sgn (X +j y) = sgn (X) +j sgn(y), and
(») Odenotes complex conjugate.

2.2 Assumptions

Prior to the analysis to be developed in the subsequent sections,
the following assumptions are made.
Assumptions
(A) The reference inputs a < (n) and a ' (n) are stationary
independent and identical digital data processes, each
having zero mean, covariance R, = E[aR(n) aR(n) 7]
=E[a'(n)a'(n) "] and variance 0,2
(B) The additive noise components v (n) and v ' (n) are
Stationary zero mean i. & i. Gaussian distributed
processes, each having variance g, %
(C) The reference input a (n) and the tap weight c (n) are
mutually independent (Independence Assumption).
In Assumption (A), a R (n) or a' (n) takes on finite number of
discrete values, and the value tr (R.2) is known. Assumption (C)
is adopted to simplify the analysis asis done in many papers.

2.3 Transient Analysisof the SA

Assuming the unknown system to be time-invariant, let “tap
weight error” vector be defined by 8 (n) = h — ¢ (n) =
R (n)+j0'(n), and itsmean and covariance by
m(n)=E[6 ()] =mF(n)+jm*n) 4
and R(nN)=E[((n)-m(n))(6(n)-m(n))"]
=RTM+R"M+j{-R¥M+R®M)}, (5
wheremR(n) =E[OR )], RR* (N =E[@R(n)—-mR(n))
(8'(n)—m'(n)) ], etc.
The excess mean sguared error (EMSE) per channel is
calculated as
e(M=E[|8M""a(m)|?]/2
=tr{fRamR@mBm "+m'Mm'Mn’
+RTEM+R" (M)}, (6
where| « | ?is squared norm of a complex number and tr ( + )
denotes trace of a matrix.
The author proposed an efficient method of calculating the

convergence of an adaptive filter with digital data input a (n)
taking on discrete values, based on the assumption that the
conditional probability distribution of e (n) given the reference
input at the kth tap, a (n — K), is approximately Gaussian [7].
Applying this method yields the following difference equations
formR(),m'(n),RM)yandR" (n).
mR(n+1)=mf(n-2a.p"(n), @
m'(n+1)=m'(n-2a.p'(n), 8
RERM+)=R®BMN)-2a.WRn)R®E ()
+REMW () +2aPR—4alpRmpfm) T (9)
and R"(n+)=R"(n)-2a.W'(nR"
+R'MW'(n)+2alRa—4alp'(mp (M7, (10
where we calculate, for the kth element of p R (n) and p' (n) and
for the (k , k) th element of W R (n) and W' (n),
PR =2E pplaR(h-Kef@ -k pRM)], (1)
P (M=2E"nyla' (n-Kef@' (h-KWp'M)], (12
WR (M) =26, g [ (0-K pu @F (1 —-K) pRc(M)) ]
><RakK/( UaZURk(n)) (13)
and W'y (M=2E"qny[a' M-k py@' (N-K) p'k(n))]
xRakK/(Gazalk(n)): (14)
with o) =uR () /(o aR’(n)),
phM=p )/ (o a'),
PR =Ram ) =[ .., u"%(m),....17,
p'(M=Ram'(M)=[..,pxm,...]7
ofm?=em-pu~(n?/ ol+0,?ad
a(m?=em-u'(m?/ol+o,>
Here, E, X(n,k) [ ] means averaging over al possible values of
a*(n—K), Ryk « isthe(k, ) th eement of R,, erf (X) = [ p (1) ot
(Error Function) and py (X) = exp (= x 2/ 2) / v 2 m(Normal
Density).
If (6) is combined with (7) through (10), theoretically expected
transient behavior of the EM SE can be calculated recurrently.

2.4 Approximation Method for Multilevel QAM

For multilevel QAM, such as 64 QAM, 256 QAM, etc., the
amplitude distribution of the reference input signal a X (n = k) or
a' (n — k) can be approximated by Uniform distribution U (0,
0 ,2) whose pdf is given by

1/2v30,)
(@) :{ 0

If we use this Uniform pdf in the expectation calculation
Ea*(n_k [+ 1in (11) through (14), we obtain
Ea"(n-w[a®(n=Kerf @ (n-k p"c(n)]
=V30.Ferf(vV3a,pR()), (16)
Ea'w-nla' (n-K2py@' (1=K p'k(n)]
=30/Gpn(V30apk(N),  (17)
and so on, where we define functions
Ferf (X) ={ (x> —1) erf (X) + xpy (0} / (2x?) (18)
and  Gpy (¥) ={erf () —xpn(9 } /x°. (19)

for|a|<v3 0,

otherwise. (15)



Use of (16), (17), etc. significantly reduces the amount of
computation required for the averaging with respect to a large
number of QAM levels of a*(n—K).

2.5 Adaptive Step Size Sign Algorithm (ASSSA)

The author proposed a new adaptive step size control algorithm
for redlizing fast convergent adaptive filters in which the
theoretically optimum step size is approximated using leaky
accumulators [6]. If the adaptive step size control agorithm
above is applied to the complex-valued Sign Algorithm, the tap
weights and the step size are to be adapted through the following

set of equations.
cin+I)=c(n+adn)sgn{e(n)}*a(n), (20)
ac(m=Re{do(n"q(n}/8tr(Ra?)) (21)
G (+1)=(1-p) G (n)+pe)*a(n), (22)
an+)=1-pam+psgn{e(n)}*a(n), (23)

where g, (n) and g (n) are vectors of length N, Re{ « } means
taking the real part of a complex number, p isleaskage factor.

The total number of Real-valued Multiplications required for
calculating (20) through (23) isfoundtobe 7 N + 1.

For the adaptive step size in (20), the expectation E [a . (n)]
and E [a . (n) 3 can be recurrently calculated with a set of
difference equations for E [qy (n)], E [q (n)], etc., which are
derived from (22) and (23). Due to space limitation, only a few
of them are given below. Here, it is assumed that the step size is
independent of the tap weights and the input datain (20) [6].

@E[@M+)]=1A-p)El@M]+2puM, (24
BE[a(m+)]=1-pE[a(m]+2pp(n), (25
©EldM+) " qn+)]=(1-p)*Eld () "q(M)]
+2(1-p)p(HM"Ela(M]+E[gM]"pn))
+p2tr (S(n)), (26)
where
p(M=Ramm)=p M) +jp' (),
pP(M=pn)+ip'(n (see(11) & (12)),
and
S =E[sgn{e(m}*emama( "]
04v2/nven)+o,%R,

Assuming the filter convergence as h - oo, the steady-state

EMSE for the ASSSA is solved to be
g(@)=08/(1-9x0,’ (27
with
3=(plA N N/tr (Ry?)
x{1+(1+m/2)/(@2N)xtr (Ry?)/ 0a'N}. (28)

3. EXPERIMENT

Simulations and theoretical calculations are performed for the
following three examples with different filter parameters, where
filter convergence with the proposed ASSSA is compared to that

with afixed step size (FSSSA). In the experiment, the simulation
result is given as an ensemble average of the squared error over
1000 independent runs of the filter convergence.

Example #1 16QAM
N=4,0,=1(0dB),o,?=.01(-20dB)
FSSSA:a.=2"% L g(®)=-390B
ASSSA: p=2~7 - &(w)=-41dB

Example #2 64QAM
N=32 0,>=1(0dB), o,2=1(0dB)
FSSSA:a =2 % - g(®)==200B
ASSA:p=2"1 L g(w)=-210B

Example #3 AMI-QAM
N=8,0,2=1(0dB), 0,%2=.1(-10dB)
FSSSA:a.=2"% L g(®)=-310B
ASSA:p=2-8 - g(®)==320B

Fig.2 shows the results of the experiment with Example #1,
where the digital data signal is 16QAM (4 x 4), SNR (= 0 .2 /
o, % ishigh (20 dB) and the EMSE is about — 40 dB. It isfound
that the proposed ASSSA significantly improves the convergence
rate of the FSSSA in the transient phase. The theoreticaly
calculated convergence curves for both FSSSA and ASSSA agree
with those of the simulations with sufficient accuracy, validating
the anaysis.
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Fig.2 Convergence of adaptive filter — ASSSA versus FSSSA /
simulation versus theory
(Example #1 ; 16QAM, N = 4, SNR=— 20 dB).
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Fig.3 Convergence of adaptive filter — ASSSA versus FSSSA /
simulation versus theory
(Example #2 ; 64QAM, N = 32, SNR= 0 dB).
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Fig.4 Convergence of adaptive filter — ASSSA versus FSSSA /
simulation versus theory (functions Ferf (x) & Gpy (X)
used) (Example #2 ; 64QAM, N = 32, SNR=0dB).
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Fig.5 Convergence of adaptive filter — ASSSA versus FSSSA /
simulation versus theory
(Example #3 ; AMI-QAM, N = 8, SNR=-10 dB).

In Fig.3 the results for Example #2 are shown. Again we
observe that the ASSSA makes the filter convergence
considerably faster.

Fig.4 depicts the theoretical convergence compared with that
of the ssimulation for Example #2, in which the approximation
using the functions Ferf (X) and Gpy (X) as described in 2.4 is
applied to 64QAM. Again we find a good match between the

theoretical and empirical convergence curves, showing the
validity of the approximation method proposed.

Finaly, Fig.5 shows the results for Example #3, where the
digita data signa is a Quadrature Amplitude Modulated
Alternate Mark Inversion code (AMI-QAM). Even for a
correlated input, the filter convergence is highly accelerated with
the ASSSA.

4. CONCLUSION

A new Adaptive Step Size Sign Algorithm (ASSSA) has been
proposed for use in complex-valued adaptive filters to be applied
to digital QAM communications.

The results of the experiment with some examples show that
the proposed ASSSA is highly effective in improving the
convergence rate and that the theoreticaly caculated
convergence and the simulated one exhibit good agreement with
sufficient accuracy, validating the analysis.

Further study is required for implementation of the proposed
ASSSA in specific applications to QAM systems such as
Decision Feedback Equalizer.
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