
ABSTRACT

A new Adaptive Step Size control algorithm is proposed to be

combined with the Sign Algorithm for use in complex-valued

adaptive filters for application to QAM communications.  The

algorithm, ASSSA, is fully analyzed to yield a set of difference

equations for calculating the transient behavior, hence the steady-

state performance, of the filter convergence in terms of excess

mean squared error (EMSE).  An approximation method for

multilevel QAM is further proposed to reduce the amount of

computation.  The results of experiment with some examples

verify the effectiveness of the proposed ASSSA in significantly

improving the convergence rate, and also show that the

theoretical convergence is in good agreement with that of

simulations, which validates the analysis.

1. INTRODUCTION

Quadrature Amplitude Modulation (QAM) is a basic modulation

scheme most widely adopted in wired and wireless digital

communications.

In the wired communications, the QAM is applied to

voiceband modems, xDSL (a family of high speed digital

subscriber line transmission systems) modems, cable modems for

CATV networks, etc.  In the wireless world, terrestrial and

satellite digital radio communications, terrestrial digital TV

broadcasting, mobile communications including the next

generation CDMA, etc., are all based on the QAM technology.

Adaptive filtering constitutes the core technology in Digital

Signal Processing, and plays a key role in the QAM

communications as well.  In fact, adaptive filters are used for

echo cancellation, channel distortion equalization, antenna array

control, etc.  In QAM applications, the adaptive filters must be

2D, or complex-valued, because the baseband signal of the QAM

is expressed as a set of in-phase and quadrature components.

In practical adaptive filtering systems, the Least Mean Square

Algorithm (LMSA) is widely used as the tap weight adaptation

algorithm.  However, the Sign Algorithm (SA), that is derived

from the LMSA, is also attractive for its simplicity in

implementation, robustness against disturbances and assured

convergence [1]-[3].  While the SA outperforms the LMSA in

impulse noise environment, the drawback of using the SA in

certain applications appears to be its fairly slow convergence rate

as compared with the LMSA [4].  Some methods for improving

the convergence rate of the SA using an adaptively controlled

step size for tap weight adaptation have been proposed [5] [6].

Based upon the above observations, this paper proposes and

analyzes a new Adaptive Step Size Sign Algorithm (ASSSA) for

use in complex-valued adaptive filters, particularly focusing on

application to digital QAM communications.

2. ASSSA FOR COMPLEX-VALUED
ADAPTIVE FILTERS

2.1 Tap Weight Update Equation for the SA

Fig.1 depicts the basic structure of an FIR adaptive filter for

identification of an unknown system, where
a (n) = a R (n) +ja I (n) complex-valued reference input

vector (length N),

c (n) = c R (n) +jc I (n) complex-valued tap weight vector
(N taps),

d (n) = d R (n) +jd I (n) = h (n)H a (n) + ν  (n) (1)
desired signal (complex),

h (n) = h R (n) + jh I (n) unknown system response vector
(complex),

e (n) = e R (n) + je  I (n) = d (n) – c (n) H a (n) (2)
error signal (complex),

ν (n) = ν R (n) +jν  I (n) additive noise (complex),

n    time instant,  N    number of taps, and  j = √ –1,

where  ( •  ) R and  ( •  ) I indicate real and imaginary part of a

complex number, respectively, and ( •  ) H denotes transpose with

complex conjugation or Hermitian.

The tap weight update equation for the complex-valued Sign

Algorithm is given by
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Fig.1 Structure of adaptive filter for system identification.

c (n+1) = c (n) + α c sgn { e (n)}∗  a (n), (3)

in which α c is real-valued step size for tap weight adaptation,

sgn ( •  ) is signum function, sgn (x + j y) = sgn (x) + j sgn(y), and

( •  ) ∗  denotes complex conjugate.

2.2 Assumptions

Prior to the analysis to be developed in the subsequent sections,

the following assumptions are made.

Assumptions
(A) The reference inputs a R (n) and a I (n) are stationary

independent and identical digital data processes, each

having zero mean, covariance Ra = E [a R (n) a R (n) T ]

= E [a I (n) a I (n) T ] and variance σa 
2.

(B) The additive noise components ν R (n) and ν  I (n) are
stationary zero mean i. & i. Gaussian distributed

processes, each having variance σν 
2.

(C) The reference input a (n) and the tap weight c (n) are
mutually independent (Independence Assumption).

In Assumption (A), a R (n) or a I (n) takes on finite number of

discrete values, and the value tr (Ra
2) is known.  Assumption (C)

is adopted to simplify the analysis as is done in many papers.

2.3 Transient Analysis of the SA

Assuming the unknown system to be time-invariant, let “tap

weight error” vector be defined by θ (n) = h – c (n) =

θ R (n) + jθ I (n),  and its mean and covariance by
m (n) = E [θ  (n) ] = m R(n) + j m 1(n)  (4)

and R (n) = E [ (θ (n) – m (n) ) (θ (n) – m (n) )H ]
= R RR (n) + R H (n) + j { – R RI (n) + R IR (n) },  (5)

where m R (n) = E [θ R (n)], R RI (n) = E [(θ R (n) – m R (n) )

(θ I (n) – m I (n) ) T ], etc.

The excess mean squared error (EMSE) per channel is

calculated as
ε  (n) = E [ | θ (n) H a (n) | 2 ] / 2

= tr {Ra (m R (n) m R (n) T + m I (n) m I (n) T

+ R RR (n) + R II (n) ) },  (6)

where |  •   | 2 is squared norm of a complex number and tr ( •  )

denotes trace of a matrix.

The author proposed an efficient method of calculating the

convergence of an adaptive filter with digital data input a (n)

taking on discrete values, based on the assumption that the

conditional probability distribution of e (n) given the reference

input at the kth tap, a (n – k), is approximately Gaussian [7].

Applying this method yields the following difference equations

for m R (n) , m I (n) , R RR (n) and R II (n) .
m R (n + 1 ) = m R (n) – 2 α c p R (n) ,  (7)

m I (n + 1) = m I (n) – 2 α c p I (n) ,  (8)

R RR (n + 1) = R RR (n) – 2 α c (W R (n) R RR (n)

+ R RR (n)W R (n) ) + 2 α c
2 Ra – 4 α c

2 p R (n) pR (n) T (9)

and R II (n + 1) = R II (n) – 2 α c (W I (n) R II

+ R II (n) W I (n) ) + 2 α c
2 Ra – 4 α c

2 p I (n) pI (n) T,  (10)

where we calculate, for the kth element of  p R (n) and p I (n) and

for the (k , κ) th element of W R (n) and W I (n),
p R k (n) = 2Ea 

R (n – k) [a R (n – k) erf (a R (n – k) ρ Rk (n) ) ], (11)

p I k (n) = 2Ea 
I (n – k) [a I (n – k) erf (a I (n – k) ρ Ik (n) ) ], (12)

W R k κ (n) = 2Ea 
R (n – k ) [a R (n – k) 2 pN (a R (n – k) ρ Rk (n) ) ]

× Ra k κ /( σ a
2 σ R 

k (n) ) (13)

and W I k κ (n) = 2Ea 
I (n – k) [a I (n – k) 2 pN (a I (n – k) ρ Ik (n) ) ]

× Ra k κ / ( σ a
2 σ Ik (n) ), (14)

with ρ Rk (n) = µ Rk (n) / ( σ a
2 σ Rk (n) ),

ρ Ik (n) = µ lk (n) / ( σ a
2 σ Ik (n) ),

µ R (n) = Ra m R(n) = [ …., µ Rk (n) , …. ] T,

µ I (n) = Ra m I (n) = [ …., µ Ik (n) , …. ] T,

σ Rk (n) 2 = ε (n) – µ Rk (n) 2 / σ a
2 + σ ν 

2, and

σ Ik (n) 2 = ε (n) – µ Ik (n) 2 / σ a
2 + σ ν 

2.

Here, Ea 
X 

(n – k) [ •  ] means averaging over all possible values of

a X (n – k), Ra k κ  is the (k , κ) th element of Ra, erf (x) = ∫ 0 x pN (t) dt

(Error Function) and pN (x) = exp (– x 2 / 2) / √ 2 π (Normal

Density).

If (6) is combined with (7) through (10), theoretically expected

transient behavior of the EMSE can be calculated recurrently.

2.4 Approximation Method for Multilevel QAM

For multilevel QAM, such as 64 QAM, 256 QAM, etc., the

amplitude distribution of the reference input signal a R (n – k) or

a I (n – k) can be approximated by Uniform distribution U (0,

σ a
2) whose pdf is given by

1 / (2 √ 3 σ a ) for | a | < √ 3 σ a
0 otherwise.

If we use this Uniform pdf  in the expectation calculation

Ea 
X 

(n – k) [ •  ] in (11) through (14), we obtain
Ea 

R (n – k) [a R (n – k) erf (a R (n – k) ρ Rk (n) ) ]

= √ 3 σ a Ferf (√ 3 σ a ρ Rk (n) ) ,  (16)

Ea 
I (n – k) [a I (n – k) 2 pN (a I (n – k) ρ Ik (n) ) ]

= 3 σ a
2 GpN (√ 3 σ a ρ Ik (n) ) , (17)

and so on, where we define functions
Ferf (x) = { (x 2 – 1) erf (x) + x pN (x)} / (2 x 2)  (18)

and GpN (x) = {erf (x) – x pN (x) } / x 3 .  (19)

���� � (15)



Use of (16), (17), etc. significantly reduces the amount of

computation required for the averaging with respect to a large

number of QAM levels of a X (n – k).

2.5 Adaptive Step Size Sign Algorithm (ASSSA)

The author proposed a new adaptive step size control algorithm

for realizing fast convergent adaptive filters in which the

theoretically optimum step size is approximated using leaky

accumulators [6]. If the adaptive step size control algorithm

above is applied to the complex-valued Sign Algorithm, the tap

weights and the step size are to be adapted through the following

set of equations.
c (n + 1) = c (n) + α c(n) sgn {e (n) }* a (n) ,  (20)

α c (n) = Re {q0 (n) H q (n) } /(8 tr (Ra
 2) ) (21)

q0 (n +1) = (1 – ρ) q0 (n) + ρ e (n) * a (n) ,  (22)

q (n +1) = (1 – ρ) q (n) + ρ sgn {e (n) } * a (n),  (23)

where q0 (n) and q (n) are vectors of length N, Re{ •  } means

taking the real part of a complex number, ρ is leakage factor.

The total number of Real-valued Multiplications required for

calculating (20) through (23) is found to be 7 N + 1.

For the adaptive step size in (20), the expectation E [α c (n)]

and E [α c (n) 2] can be recurrently calculated with a set of

difference equations for E [q0 (n)], E [q (n)], etc., which are

derived from (22) and (23).  Due to space limitation, only a few

of them are given below.  Here, it is assumed that the step size is

independent of the tap weights and the input data in (20) [6].
(a) E [q0 (n +1) ] = (1 – ρ) E [q0 (n) ] +2 ρ µ (n) , (24)

(b) E [ q (n +1) ] = (1 – ρ) E [q (n) ] +2 ρ p (n) , (25)

(c) E [q0 (n +1) H q (n +1) ] = (1 – ρ ) 2E [q0 (n) H q (n) ]

+ 2 (1 – ρ ) ρ ( µ (n) HE [q (n) ] + E [q0 (n) ] H p (n) )

+ ρ 2 tr (S (n) ), (26)

where
µ (n) = Ra m (n) = µ R (n) + j µ I (n) ,

p (n) = p R(n) + j p I (n)  (see (11) & (12) ),

and
S (n) = E [sgn {e (n) } * e (n) a (n) a (n) H ]

≅  4 √ 2 / π √ ε (n) + σ ν 2 Ra.

Assuming the filter convergence as n → ∞, the steady-state

EMSE for the ASSSA is solved to be
ε ( ∞ ) = δ / (1 – δ) × σ ν 

2 (27)

with
δ = (ρ /4) N σ a

4 N / tr (Ra 
2 )

× {1 + (1 + π / 2) / (2N) × tr (Ra
 2 ) / σ a

4 N }. (28)

3. EXPERIMENT

Simulations and theoretical calculations are performed for the

following three examples with different filter parameters, where

filter convergence with the proposed ASSSA is compared to that

with a fixed step size (FSSSA).  In the experiment, the simulation

result is given as an ensemble average of the squared error over

1000 independent runs of the filter convergence.

Example #1  16QAM

N = 4, σ a
2= 1 (0 dB), σ ν 

2 = .01 ( – 20 dB)

FSSSA : α c = 2 – 12 → ε ( ∞ ) = – 39 dB

ASSSA : ρ = 2 – 7 → ε ( ∞ ) = – 41 dB

Example #2  64QAM

N = 32, σ a
2= 1 (0 dB), σ ν 

2 = 1 (0 dB)

FSSSA : α c = 2 - 12 → ε ( ∞ ) = – 20 dB

ASSSA : ρ = 2 – 10 → ε ( ∞ ) = – 21 dB

Example #3  AMI-QAM

N = 8, σ a
2 = 1 (0 dB), σ ν 

2 = .1 ( – 10 dB)

FSSSA : α c = 2 – 12 → ε ( ∞ ) = – 31 dB

ASSSA : ρ = 2 – 8 → ε ( ∞ ) = – 32 dB

Fig.2 shows the results of the experiment with Example #1,

where the digital data signal is 16QAM (4 × 4), SNR (= σ a
2 /

σ ν 
2) is high (20 dB) and the EMSE is about – 40 dB.  It is found

that the proposed ASSSA significantly improves the convergence

rate of the FSSSA in the transient phase.  The theoretically

calculated convergence curves for both FSSSA and ASSSA agree

with those of the simulations with sufficient accuracy, validating

the analysis.
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Fig.2 Convergence of adaptive filter – ASSSA versus FSSSA /

simulation versus theory

(Example #1 ; 16QAM, N = 4, SNR = – 20 dB).
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(Example #2 ; 64QAM, N = 32, SNR = 0 dB).
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Fig.4 Convergence of adaptive filter – ASSSA versus FSSSA /

simulation versus theory (functions Ferf (x) & GpN (x)

used) (Example #2 ; 64QAM, N = 32, SNR = 0 dB).
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Fig.5 Convergence of adaptive filter – ASSSA versus FSSSA /

simulation versus theory

(Example #3 ; AMI-QAM, N = 8, SNR = – 10 dB).

In Fig.3 the results for Example #2 are shown. Again we

observe that the ASSSA makes the filter convergence

considerably faster.

Fig.4 depicts the theoretical convergence compared with that

of the simulation for Example #2, in which the approximation

using the functions Ferf (x) and GpN (x) as described in 2.4 is

applied to 64QAM.  Again we find a good match between the

theoretical and empirical convergence curves, showing the

validity of the approximation method proposed.

Finally, Fig.5 shows the results for Example #3, where the

digital data signal is a Quadrature Amplitude Modulated

Alternate Mark Inversion code (AMI-QAM). Even for a

correlated input, the filter convergence is highly accelerated with

the ASSSA.

4. CONCLUSION

A new Adaptive Step Size Sign Algorithm (ASSSA) has been

proposed for use in complex-valued adaptive filters to be applied

to digital QAM communications.

The results of the experiment with some examples show that

the proposed ASSSA is highly effective in improving the

convergence rate and that the theoretically calculated

convergence and the simulated one exhibit good agreement with

sufficient accuracy, validating the analysis.

Further study is required for implementation of the proposed

ASSSA in specific applications to QAM systems such as

Decision Feedback Equalizer.
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