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ABSTRACT

In many applications there exists an array of cells (or bins), each
containing either an activity (signal) plus noise, or noise only. A
common problem is to identify the active bins, assuming that the
noise level in the array is unknown. In this paper we present a
novel approach for solving this problem. The approach is based on
two steps. In the first, we estimate the noise level and in the second
we perform a sequential test to decide, for each bin, whether it is
active or not. We show that the proposed algorithm collapses to
well known special cases. The performance of the proposed algo-
rithm is analyzed analytically and is demonstrated via simulation
results.

1. INTRODUCTION AND PROBLEM FORMULATION

Consider the additive noise model:

xi = si + ni i = 1; : : : ; N (1)

where fsigNi=1 are unknown constants. Assume, also that ni is
a real, zero mean, stationary, white Gaussian random process with
unknown variance, denoted by �2. We refer to measurements with
si = 0 as noise only measurements, while the other measurements
are refereed to as activity measurements. The aim is to identify the
active bins, or the bin indices of the noise only measurements, “as
good as possible”. The total number of active bins is unknown.
However, it is assumed that this number is bounded by M < N ,
where M is known a-priori.

The problem relates to many different applications. For exam-
ple, in image denoising [6], xi is the i-th coefficient of the wavelet
transform of the received signal (image), and si is the i-th coeffi-
cient of the wavelet transform of the original signal (image). ni is
the additive Gaussian noise with unknown variance, i.e. unknown
noise level. Another application is synchronous CDMA com-
munication, where the measurements, x1; : : : ; xN , represent the
outputs of the time shifted PN sequence, matched filtered with
the received signal. It is well known that x1; : : : ; xN are indepen-
dent, Gaussian random variable with mean si � 0 and common
variance �2 [8]. Each index i such that si > 0 corresponds to one
replica of the signal present at that time shift.

Denote by I the set of indices such that si = 0, that is,
I = fijsi = 0g. Recall that the unknown size of I is at least
N-M. As stated earlier, the aim is to detect/identifiy I ”as good
as possible”. In image denoising, detecting this set enables one
to “clean” the image by performing the inverse wavelet transform
without the coefficients belonging to I , since these coefficients do
not contain any information about the original signal (image). In
CDMA communications, by detecting I one knows which time

shifts contain replica of the signals. These time shifts can be coher-
ently combined to increase the signal to noise ratio of the received
signal.

The Neyman-Pearson criterion is the most widely used crite-
rion to assess the optimailty of a detector. However, since the prob-
lem of interests involves a series of detection problems, no equiv-
alent criterion exists. Thus, optimality needs to be defined when
trying to identify I ”as good as possible” based on x1; : : : ; xN .
Denote by Î the estimated set of indices belonging to I . Denote
by I � Î the set of indices which belongs to I but do not belong
to Î. We refer to the indices which belongs to I � Î as ”false
alarms”, i.e., noise measurements which were detected as activity
measurements. In the applications we refer to, one does not have
any preferences on the exact indices belonging to I�Î. Therefore,
we seek for an algorithm which is invariant to the exact location
of the false bins. That is, a noise measurement in a specific bin
should have an equal probability to be detected as an activity, as
another noise measurement in a different bin. This reasoning leads
to an optimality criterion similar to the Neyman-Pearson criterion
per bin: maximize the probability of detection of an activity, sub-
ject to a constant probability of false alarm which is the same for
each index belonging to I , independently.

In the sequel, we present a novel approach for solving the
problem of interest. First, we estimate the noise level, �2. Then
we perform a sequential binary hypothesis test to decide, for each
bin, whether it is active or not.

The paper is organized as follows: In section 2, we discuss
the difficulties with a different, well known approach to solve our
problem - the MDL approach. In section 3, we describe the pro-
posed noise level estimator (step 1), and in section 4 we present
the entire algorithm (step 2). Section 5 provides simulation results
and in section 6 we discuss the results and their relation to other,
well know problems and solutions.

2. THE MDL ESTIMATOR

Our problem can be viewed as one of choosing the best model out
of several possible models. The MDL [10] is the most common
approach to deal with such problems. The MDL is an information
theoretic criterion which chooses the model that minimizes the de-
scription length of both the data and the model. In our problem, the
MDL estimate is the one which minimizes the following metric:

MDL(i) = min
i=0;:::;N

� log fX(x1; : : : ; xN j�̂i) +
+ 0:5 � (2i+ 1) logN (2)



where �̂i is the ML estimate of the unknown parameter vector as-
suming the existence of i signals (activities). The unknown pa-
rameters are the i locations of the activities, their i corresponding
levels, and the noise level.

Denote by x1:N � � � � � xN:N the ordered sample, and by
jxj1:N � � � � � jxjN:N the ordered absolute values of the mea-
surements. It can be shown that the ML estimates for the signal
levels are the values of the i largest absolute value measurements.
The ML estimates for the locations of the signals are their corre-
sponding indices. The ML estimate for the noise level is given by
1
N

PN�i

i=1
jxj2N�i+1:N . Clearly, the mean of the ML estimate of

the noise level is inherently biased, unless i = 0. It can be proved
this bias causes large probability of false alarm.

3. CENSORING BASED NOISE LEVEL ESTIMATION

In this section we give a brief description of an approximated or-
der statistics maximum likelihood method for estimating the noise
level from censored samples. This method was first described in
[1]. In [3] we describe few other methods for accomplishing this
task.

Assume that x1; : : : ; xN are samples of an i:i:d: zero mean,
Gaussian random variables with variance �2 and that x1:N �
x2:N � � � � � xN�1:N � xN:N are the ordered sample. In
censoring based estimation one estimates the unknown parame-
ters from a censored sample. Assume that we censor the smallest
r samples and the largest s samples, and we aim to estimate �2

based on xr+1:N ; xr+2:N ; : : : ; xN�s:N only.
The likelihood of xr+1:N ; xr+2:N ; : : : ; xN�s:N is given by:
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The ML estimate for the noise level is given by the solution
of:
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where zi:N = xi:N
�

, and A = N � r � s. Since no closed form
expression for the distribution function of normal random variable
exists, (??) can only be solved numerically.

In [1] it was suggested to expand the functions
f(zr+1:N )

F (zr+1:N)
and

f(zN�s:N)

1�F (zN�s:N)
about the points �r+1 = F�1(pr+1) and �N�s =

F�1(pN�s), where pi+1 = i
N+1

. Expanding (5) using a Taylor
series and plugging in the well known fact that for standard normal
random variable f

0

(z) = �zf(z), result in an approximation for
(5). The solution of this equation is the approximated ML estimate
of the noise level:

�̂ =
�D +

p
D2 + 4AE

2A
(5)

where

D = r�xr+1:N � s
xN�s:N (6)

E =

N�sX
i=r+1

x2i:N + r�x2r+1:N + sÆx2N�s:N (7)

where �; �; 
; and Æ are given in the Appendix.

4. THE ALGORITHM AND ITS PERFORMANCE

In this section we present two variations of the proposed algorithm.
The first algorithm is an adaptation of the OS � CFAR detector
[7] for our problem. The second algorithm presents a novel itera-
tive approach which overcomes the disadvantage of the first one.

4.1. Algorithm I

Recall that the algorithm aims to detect the activity measurements
as good as possible. That is, to identify the indices belonging to I
with a desired probability of false alarm. The proposed algorithm
consists three stages:

1. Estimation.

2. Setting a threshold.

3. Decision.

Estimation: In this stage the noise level is estimated using
(5). First, some of the smallest and largest samples are censored.
The censoring must insure that, with high probability, the resulting
measurements consist of noise only measurements. Let xr+1:N ; : : : ; xN�s:N

be the censored sample. Under the assumption that all these mea-
surements belong to the noise subspace (with high probability ), it
is easy to verify that [2]:

f(xr+1:N ; : : : ; xn�s:N j�2; I; �1; : : : ; �jIj) �
f(x~r+1: ~N ; : : : ; x ~N�~s: ~N j�2) (8)

where ~N is the actual number of noise only measurements and
~r; ~s are the actual number of smallest and largest noise only cen-
sored samples, respectively. For example, assume that N = 10
and that s1 = 5; s2 = �5; si = 0; i > 2. In this example we
have one negative and one positive activity (signal). The size of
the noise sample is 8, thus ~N = 8. Also, if we censor the three
highest and the three lowest measurements (r = s = 3), then with
high probability, the two lowest measurements and the two high-
est measurements from the noise measurements are censored, so
~r = ~s = 2. The approximation in (8) enables us to use (5) for
estimating the noise level.

It turns out that the false alarm rate of the algorithm is highly
dependent on ~N; ~r; ~s. As an example, consider the case where
N = 100, s1 > 0 and si = 0; 8i > 1. Assume that we have
censored from the measurements the 25 highest and lowest sam-
ples. The samples used to estimate the noise level are therefore
x26:99; : : : ; x75:99. If one wrongly assumes that there are two ac-
tivities, one positive and one negative he/she will assume that sam-
ples x25:98; : : : ; x75:98 are used for the noise level estimation. The
resulting noise level estimate will be biased, which, in turn, results
in a different (yet constant) probability of false alarm.

Setting the threshold: In this stage a threshold, denoted by T ,
is set. The threshold is of the form T = a�̂2, where a is set to
insure a desired probability of false alarm.

Decision: In the decision stage each measurement, xi, is com-
pared to the threshold T . We distinguish between two cases. In
the first case it is known that the activities are only positive (e.g.,



power). The decision rule is then of the form: “if xi < T then
i 2 I; otherwise i 2 �I”. In the second case activities can be posi-
tive or negative so we use the following decision rule: “if jxij < T
then i 2 I; otherwise i 2 �I”.

4.2. Algorithm II

The main drawback of the proposed algorithm is the necessity to
know the number of positive and negative activities to set a thresh-
old for a desired false alarm rate. This unrealistic requirement pre-
vents the ability to design an algorithm with a known false alarm
probability, (although the algorithm is still of a constant false alarm
rate). To overcome this difficulty we present a iterative version of
the proposed algorithm.

The iterative algorithm uses the estimated number of sources
obtained in one iteration as the input for the noise level estimator
in the next iteration. As will be explained later, we can reduce the
bias in noise level estimation in each iteration and thus to achieve
the designed performance.

The new algorithm can be described in the following general
scheme:

1. Estimation.

2. Setting a threshold.

3. Decision.

4. Stopping.

5. Return to 1.

Estimation: This stage is similar to the estimation stage in
algorithm I. However, now it is repeated several times, each time
with the estimated ~r; ~s; ~N from the previous iteration.

Setting a threshold and decision: These stages are the same as
in the previous algorithm.

Stopping: In this stage we decide whether to make another
iteration or not. We suggest the following, simple criterion: if no
new activities were detected during the last iteration, the algorithm
is terminated.

The iterative procedure provides a new way to eliminate the
need to know in advance the true number of activities. In every
step we estimate the number of positive and negative activities.
This number can be used in the noise level estimator for improving
the accuracy. If the initial conditions are set correctly, this proce-
dure will stops. We provide here an intuitive explanation how this
procedure works:

We set the initial condition to be ~N = N , that is - no activi-
ties. In the first iteration the noise estimate will have positive bias,
which will decrease the probability of false alarm (compared to
the planned one). The strong activities will be detected while the
weak activities will remain undetected. In the next iteration the
noise level estimate will be smaller than the noise estimate in the
previous iteration. This decrease will lower the threshold which, in
turn, causes more activities to be detected. This process will con-
tinue until it stops when no more activities will be detected. Does
it happen? the answer is yes. Assume (w:l:g:) that no activities ex-
ist. We start the process and if the probability of false alarm is very
small compared to the number of measurements, than no more ac-
tivities will be detected and the process will stop. If, however, the
probability of false alarm is much greater than the number of mea-
surements, few noise measurements will be detected as activities.

5. SIMULATIONS

To demonstrate the performance of the proposed algorithm, con-
sider the following example: N = 1024; s1 = 10; s2 = 5; s3 =
1; si = 0; i > 3; �2 = 1. The following table depicts the proba-
bility of detection as a function of the designed probability of false
alarm for the three possible bins, s1; s2; s3. We have simulated al-
gorithms I and II and computed their probability of detection and
false alarm We denote by PD(si)Alg j the probability of detection
of si by the j-th algorithm. For simplicity, the threshold (i.e., a)
has been set assuming the noise level is known.

In the first experiment we used the true number of sources for
the noise level estimator in Algorithm I. The initial condition for
Algorithm II was N = ~N (no activities). The results are given in
the next table.

Designed Pfa 1e�4 5e�4 1e�3 5e�3

Empirical Pfa 1:4e�4 6:4e�4 1:25e�4 5:63e�3

PD(s1)Alg1 1 1 1 1
PD(s2)Alg1 0.61 0.77 0.83 0.93
PD(s3)Alg1 0 0.01 0.02 0.07
PD(s1)Alg2 1 1 1 1
PD(s2)Alg2 0.59 0.76 0.82 0.93
PD(s3)Alg2 0 0.01 0.02 0.06

It shows that the performance of the two algorithms is simi-
lar, and - in particular - the empirical probability of false alarm is
almost equal to the designed probability of false alarm.

However, when in Algorithm I a wrong number of activities
is assumed, the situation is different. In the second experiment 10
activities were assumed when using the noise level estimator in the
first algorithm.

Designed Pfa 1e�4 5e� 4 1e�3 5e�3

Empirical Pfa 2:7e�4 9:6e�4 1:73e�3 7:09e�3

PD(s1)Alg1 1 1 1 1
PD(s2)Alg1 0.66 0.80 0.85 0.94
PD(s3)Alg1 0.01 0.02 0.03 0.08

While the probability of detection is unchanged, the designed
probability of false alarm differs considerably from the empirical
probability of false alarm.

This experiment demonstrates the sensitivity of the perfor-
mance of algorithm I to the prior knowledge on the number of
activities. Algorithm II, however, is a CFAR detector even where
the noise level and the number of activities are unknown.

6. DISCUSSION

The key point in our proposed algorithm is the improved noise
level estimate, which can be achieved even if the number of ac-
tivities is unknown. It is based on an iterative censoring based
procedure. However, using censored sample to eliminate activi-
ties is not a new idea and it has been previously used for detecting
known signal in unknown noise level environment [5].

In radar systems the problem of detecting a signal which is
known up to a phase term in Gaussian noise of unknown level is an
essential one. Based on the common implementation, this problem
is usually modeled as follows: Let x1; : : : ; xN be an exponential
random variable, where the mean of x2; : : : ; xN is equal to �2

and the mean of x1 is equal to �2 + s. If s = 0 then no signal is
present, if s > 0 the signal is present. Usually, x1 is the received



match filtered signal and xi i � 2 are usually samples of the match
filtered noise. The optimal invariant detector for such a problem is
given by:

T (x1; : : : ; xN ) =
x1P
N

i=2
xi

N�2

>
<
Signal+Noise

Noise Æ

As pointed out in [9] (among many others), the performance of
this detector decreases when the noise measurements, x2; : : : ; xN
contain interference. To avoid this difficulty it was suggested to
censor few of the largest valued measurements and to estimate the
noise level based on censored samples. Such a detector is usually
refereed to as the OS-CFAR detector, which can be found in radar
quite extensively [7].

The algorithm presented here suggest a new approach to deal
with a much larger class of problems, where the noise level is
unknown. Our approach can be regarded as an extension of the
OS � CFAR detector. The proposed algorithm is, to the best of
our knowledge, the first CFAR detector for the case where both the
noise level and the number of activities are unknown. As such, it
is flexible in the sense that it provides means to control the perfor-
mance of the algorithm (i.e., the probability of false alarm).

In [3] we suggest new estimation procedures for the normal
model and other probabilistic models. We also give exact expres-
sions for the probability of false alarm as a function of the thresh-
old. The analysis is carried out for few important model.
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8. APPENDIX

The Taylor series for f(zr+1:N )

F (zr+1:N)
and f(zn�s:N)

1�F (zN�s:N)
around the points

�r+1 = F�1(pr+1) and �N�s = F�1(pN�s) are given by the
following equations:

f(zr+1:N)

F (zr+1:N)
� �� �zr+1:N (9)

f(zN�s:N )

1� F (zN�s:N)
� 
 + ÆzN�s:N (10)

where

� = f(�r+1)f1 + �2r+1 + �r+1f(�r+1)=pr+1g=pr+1(11)

� = f(�r+1)ff(�r+1) + pr+1�r+1g=p2r+1 (12)


 = f(�n�s)f1 + �2n�s � �n�sf(�n�s)=qn�sg=qn�s(13)

Æ = f(�n�s)ff(�n�s)� qn�s�n�sg=q2n�s (14)

The ratio
f 0
X
(x)

fX (x)
is equal to�x when X is the standard normal

random variable. Submitting back these expressions (11,12,13,14)
and the ratio into equation (5) results in the approximated equation
given by:

@ lnL(�)
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The solution of (15) is given by the following equation:

�̂ =
�D +

p
D2 + 4AE

2A
(16)

where

D = r�xr+1:N � s
xN�s:N (17)

E =

N�sX
i=r+1

x2i:N + r�x2r+1:N + sÆx2N�s:N (18)


