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ABSTRACT

In this paper, a new online algorithm for updating equation error
IIR ADF is proposed. The proposed algorithm, which involves
maintaining a constant power of the desired signal, is
independent of the white disturbance signal, and hence there is
no bias in the coeff icient's estimate of the ADF. We also provide
the analysis and simulation results which verify this kind of
performance. Appli cation of the proposed algorithm to adaptive
line enhancer (ALE) is also provided. When compared with the
method which uses cascaded notch filt er, we observe a
considerable improvement in performance due to the complete
elimination of effect of white noise under mean sense condition.

1. INTRODUCTION

In adaptive signal processing, finite impulse response (FIR)
ADF has been widely used due to its simpli city and stable
convergence characteristics, which are well known. However,
FIR ADF has a shortcoming in systems where good performance
can only be attained if the filt er order is made very large. Such
an occurrence is possible in acoustic echo cancellation
appli cations. Consequently, there is has been a lot of interest in
IIR ADF, which can achieve the same level of performance as
the FIR type, but at an advantage of using only a fewer number
of coeff icients.

Several approaches have made in order to estimate an unknown
system by the use of IIR ADF [1][2]. In the case of using the
output error, it has been shown that there is a possibilit y of
convergence to a local minimum, with no guarantee on system
stabilit y [2]. Based on the problems associated with the output
error mode of identification, the equation error formulation of
IIR ADF has been actively researched on [3]-[6]. In its simpler
form, where the mean square of the equation error is directly
minimized using a gradient based algorithm, estimated
parameters contain a bias if there is a disturbance signal [1][2].

In this paper, a new gradient-based algorithm for an equation
error type of system identification is proposed. The proposed
method ensures that the power of the desired signal is always
kept constant throughout the system identification. This
condition then enables coeff icient estimation without bias, if the
disturbance signal is white. We begin with the general
introduction to equation error type of IIR ADF. In section 3, we
present the proposed algorithm, while in section 4 we propose a

system for using the proposed algorithm in ALE. Finall y, we
provide the simulation results, which verify the performance of
the system.

2. EQUATION ERROR IIR ADF

Consider an IIR ADF with the transfer function )(zH , which is

given by
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Fig.1. IIR system Identification model using the equation error
formulation.

Without loss of generality we have assumed that the order of the
numerator and denominator polynomial of )(zH are the same.

The desired signal, which has been corrupted by noise is given
by

)()()( nsndnd +′=  (2)

where )(nd′  is the output of the unknown system and )(ns is

the disturbance signal, which is assumed to be statisticall y
independent from the input signal )(nx .

The disturbance signal is also assumed to be white with a

variance of 2σ . The error signal used for updating the ADF



based on the equation error approach is shown in Fig.1. It can

also be expressed as
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The mean square of the estimation error [ ])(2 neE is given by
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This function is a unimodal function of both )(ˆ na and )(ˆ nb  [2].

However, when it is minimized directly using a gradient-based
algorithm, the second term will contribute to the bias of
parameter estimation.

Several methods have been proposed in order to eliminate the
effect of the second term onto the parameter estimation. In one
of the methods known as the unit norm, all the coeff icients of
are updated, while keeping the value of )(ˆ)(ˆ nn aaT  to be unity.

The off li ne algorithm, which results, essential eliminates the
effect of noise albeit with complex computation [4].

Another approach would be to minimize

[ ] )(ˆ)(ˆ)(2 nnneE aaTλ− , by indirectly estimating the variance

of the noise such that 2σλ = [6].

3. PROPOSED ADAPTIVE ALGORITHM

In this paper we propose a new simple online algorithm, which
ensures that the power of the desired signal is constant and
independent of the coeff icients of the ADF. The proposed

algorithm is obtained by minimizing [ ]
)(ˆ)(ˆ
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by updating )(ˆ na and )(ˆ nb , respectively, based on a gradient

descent algorithm. The proposed adaptive algorithm is therefore
be given,
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3.1 Effect of disturbance signal on convergence

In this section, we prove that the effect of a white disturbance
signal does not contribute to the convergence of the coeff icients
in the mean sense. We shall assume that the disturbance noise

)(ns and the input signal )(nx are statisticall y independent from

each other. Thus,
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The last term in Eq.(6) can be expressed as
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In other words, in the mean sense, the white disturbance signal
does not have any effect in the convergence of the coeff icients of
the ADF.

3.2 Effect of normalization on the error surface

It is well known that the function [ ])())(ˆ( 2 neEnf s=a is a

unimodal function [2], where )(nes
is the equation error without

the disturbance signal. For a given value of )(ˆ nb , say



1bb =)(ˆ n , the gradient of ))(ˆ( nf a has a single unique point at

which its value is zero. At this particular point, the gradient of
this function can be expressed as
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R is a symmetrical matrix whose Eigen vector is not
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From this equation, we can say that one solution of the
minimum of the normali zed equation error occurs at a point
where ( ) 0)(ˆ =− 1aa n . The other solution occurs at a point

where ( )1aaR −)(ˆ n  is an Eigen vector of matrix M , with a

corresponding Eigen value 2
)(ˆ na . However, since 2

)(ˆ na  is

not an Eigen value of M , it follows that ( )1aaR −)(ˆ n  is not an

Eigen vector of matrix M , and ( ) 0)(ˆ =− 1aa n . Thus the

normali zation of the equation error does not change the
minimum of the error surface.

3.3 Application of the algorithm to adaptive line
enhancer (ALE)

ALE has been used as way of enhancing sinusoidal signal,
which has been mixed with noise [2][7]. This kind of system
amounts to thk step prediction, where proper choice of the value
k is required [2]. When updated using LMS algorithm the effect
of the white noise will however cause a frequency estimation
bias. An alternative approach has been the use of the IIR
adaptive notch filt er. Unfortunately, IIR adaptive notch filt er

suffer from the problem of slow convergence especiall y if the
notch bandwidth is very narrow.

In this section, we propose a new method of enhancing
sinusoidal signals mixed with noise. The proposed method
incorporates the algorithm, which has been proposed for the
equation error IIR ADF. Figure 2 ill ustrates the proposed
method, where in this case )(nxs

 is the sinusoidal signal, )(ns is
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Fig.2 Proposed adaptive li ne enhancer.

The adaptive algorithm for the ALE is given by
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for 2,,1 Mi �= , where the order M of filt er )(zA is even,

0.1)(ˆ0 =na  and )(ˆ)(ˆ 1 nana iNi −−= . With this kind of setting,

the zeros of )(zA will always be constrained to li e on the unit

circle of the z-plane, such that )()( 1−zrAzA  is a notch filt er,

with the normali zed notch frequency( )�,, 21 NN ff  determined

by the roots of )(zA , while the value of r determines the notch

bandwidth.

4. SIMULATION AND RESULTS

In this section, we present the simulation results of the proposed
equation error algorithm, and its appli cation to ALE. In the case
of IIR ADF formulated using the equation error, the unknown
system was a fourth order moving average auto-regressive filt er.
An exact modeled ADF was considered with the signal to noise
ratio (S/N) set to 10dB. S/N is defined as

[ ] [ ])()(log10/ 22
10 nsEndENS ′=  dB  (12)

The measure of performance was the echo return loss
enhancement (ERLE), which is given by
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Figure 3 shows the result obtained. In this figure, the proposed
algorithm was compared with the algorithm in reference [6], and
the equation error algorithm, which directly minimizes the
equation error.  From this result we observe that the proposed
algorithm had roughly the same performance characteristic as
the algorithm in [6], which also has roughly the same
performance as [3].



Next, we investigated the performance of the proposed line
enhancer. We considered an exact modeled system (M=4),
where the sinusoid signals ( ))7.0cos()2.0cos( nn ππ + were

mixed with a white noise such that signal to noise ratio was
25dB. The result was compared with the cascaded notch filt er,
which was updated using the algorithm that minimizes the bias
[8]. The value of r was set to 0.95. The measure of performance
Ecwas based on the mean square deviation of the notch
frequency from those of the sinusoids.
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where after convergence, 
1Nf and

2Nf correspond to 0.2 and 0.7,

respectively. Figure 4 shows the convergence characteristic,
while Fig.5 shows the absolute value of the transfer function
after convergence of the algorithm. From this result, we observe
that the proposed exact modeled line enhancer had a faster
convergence speed, and better estimation accuracy in
comparison to the cascaded notch filter.
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Fig.3. Convergence characteristic of the proposed
equation error algorithm in comparison to b algorithm in
[6] and (a) the algorithm in [1].
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Fig.4. Convergence characteristic of the proposed ALE
in comparison to the cascaded notch filter.
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Fig.5. Band pass characteristic after convergence of the
proposed ALE.

5. SUMMARY

We have proposed a new algorithm for an IIR ADF formulated
using the equation error mode of estimation. The proposed
algorithm is independent of the white disturbance signal and
hence it eliminates the bias under such a condition. From the
simulation result provided, we observe that there is comparable
but very slight improvement in performance in comparison to
similar algorithm with the same computational level. Further
analytical comparison is however recommended.

We also proposed a structure for ALE, which employs the
proposed algorithm. In comparison to the cascaded notch filt er,
the proposed algorithm had a faster convergence speed and a
better estimation accuracy.
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