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ABSTRACT

We show that discriminative training methods have the
potential to improve noise robustness even for high reso-
lution acoustic models trained on noisy data. To this end,
we compare the performance of acoustic models trained
on noisy data using maximum likelihood (ML), corrective
(CT) and rival training (RT). Experiments are performed
on a German and a Dutch continuous digit string recog-
nition task, yielding improvements in the range of 12% to
35% relative.

1. INTRODUCTION

In spite of considerable progress made in the past years,
environmental noise is still one of the most challenging
problems in practical applications of automatic speech
recognition. Several strategies to handle this problem have
been investigated: One possibility is try to eliminate the
noise from the acoustic features (e.g. spectral subtraction
[5], Wiener filtering or to enhance the speech component
(e.g. singular value decomposition [3]). A second approach
is to adapt the acoustic models to the noisy environment
(e.g- MLLR and MAP [5], PMC [6]). In any case, how-
ever, it is advisable to choose a suitable training objective
in acoustic model training which guarantees best perfor-
mance in presence of noise. In this study, we investigate if
discriminative training (DT) is suited to improve noise ro-
bustness as compared to conventional maximum likelihood
(ML) training.

In various studies on clean data it has been shown that
DT improves the performance of acoustic models as com-
pared to ML training. Discriminative training criteria fo-
cus directly on misclassifications by increasing the class
separability between the acoustic models. Such criteria
include minimum classification error (MCE) [8], maxi-
mum mutual information (MMI) [1] and corrective train-
ing (CT) as special case of MMI training. Recently, an ex-
tended version of the corrective training algorithm, called
“rival training” (RT), has been proposed [12]. As CT,
this algorithm can be implemented completely within the
Viterbi framework, but outperforms CT significantly.

Performing acoustic model training on clean data, DT
has been applied successfully also to noise mismatch situa-
tions. For example, [11] has investigated the combination
of minimum error classification and various algorithms for

noise mismatched environments.

In many applications, however, the available training
data contain noise, even after application of noise sup-
pression methods. Furthermore, in order to decrease the
mismatch between training and (noisy) test data one can
simply add noise to the training data. Thus it is impor-
tant to investigate the performance of discriminative train-
ing also on noisy training data. This scenario has been
addressed, for example in [7], proposing a discriminative
training algorithm for environmental parameters. In [10],
it was found for “coarse” acoustic models (single densi-
ties and three densities per mixture) that MCE clearly
outperforms ML in a noise robust speech recognition task
(where the training utterances were recorded in three dif-
ferent noise conditions).

For high resolution acoustic models, however, it is gen-
erally known that the improvements gained by discrimi-
native training are smaller than for low resolution models
[14, 13]. The general problem is that the large number
of parameters might lead to overfitting effects, i.e. perfor-
mance degradation on independent test data. This effect
might be even worse for training on noisy data, since dis-
criminative training might adapt the models to the spe-
cific noise realisation, without improving the robustness
of the acoustic models. Therefore, the goal of our work
is to show that discriminative training in general has the
potential for improving model quality even for large scale
models trained on noisy data. For efficiency reasons, we
are focussing on rival training and corrective training as
the simplest discriminative training algorithms.

We compare in our work the performance of acoustic
models with more than 60 densities per mixture, trained
with ML, CT and RT on data characterized by additive
noise, in a continuous digit string recognition task. Eval-
uation experiments are carried out in noise matched and
mismatched conditions. For the noise mismatch situations,
we do not assume any prior knowledge about the degree
of noise of the test data. Experiments are reported on a
German database with additive Gaussian white noise, and
a Dutch database with additive real car noise, applying
quite different feature extractions.



2. TRAINING CRITERIA

2.1. Maximum Likelihood Training

A commonly used training criterion to determine the pa-
rameters of the acoustic model is the maximum likelihood
(ML) principle
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where X, denotes a sequence of acoustic observation vec-
tors for utterance r € {1,..., R}, W, denotes the corre-
sponding sequence of spoken words and A represents the
set of acoustic model parameters. Maximum likelihood
parameter estimation tries to maximize the likelihood for
the spoken word sequence to generate the observed fea-
ture sequence. Since competing models are not taken into
account, the recognition accuracy is maximized only indi-
rectly.

2.2. Corrective and Rival Training

Several discriminative training (DT) approaches have
been suggested [1, 2] trying to maximize class separabil-
ity and thus to improve recognition accuracy directly. A
commonly used approach is to maximize
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This training criterion (“maximum mutual information”,
MMI) simultaneously tries to increase the likelihood of the
spoken word sequence W, and to decrease the likelihood of
competing hypotheses W contained in the “general model”
Wyen. In general, W, is obtained by a recognition pass
on the training data. The acoustic parameters A are then
reestimated in an iterative procedure, involving the deter-
mination of Wye, according to the new estimate of A and
the re-application of the reestimation equations in each it-
eration step. The reestimation equations are given e.g. in
[13].

The implementation of this training process can be
greatly simplified if the general model (3) is restricted to
the recognized tezt. Since in this case correctly recognized
sentences cancel out in equation (2), only misrecognized
sentences contribute to the training criterion. The result-
ing algorithm is called corrective training (CT).

Corrective training, however, has its limits when the
training error is very low, since then only few material
is used for reestimation of the acoustic parameters, with
increasing risk of overfitting. A simple extension of the

CT algorithm, called “rival training” (RT) has been pro-
posed in [12], which is implementationally much less ex-
pensive than lattice-based discriminative training meth-
ods like MMI and MCE, but gives significantly better per-
formance as CT. The algorithm uses also correctly rec-
ognized sentences, if their (absolute) score difference to
the second best hypothesis does not exceed a threshold
value, determined as quantil of the score difference his-
togram [12]. This amounts to defining Wyen to be the
best scored incorrect hypothesis.

3. EXPERIMENTS

3.1. Noise addition

In our experiments, we use the following noise addition
scheme: For each utterance of the (clean) data, the SNR
of the utterance is estimated. Then, given a “target SNR”
(i.e. the desired SNR of each utterance after noise addi-
tion), a weight for noise addition is calculated for each ut-
terance such that the (weighted) addition of random noise
to the clean signal yields the desired target SNR. The noise
addition is performed on the sample level.

For noise addition, we use two scenarios: Gaussian white
noise and real car noise. The car noise was taken from
the MoTiV [9] data collection, using data recorded in 5
cars, each at two different speed values (city and highway).
For each utterance, the noise environment to be added is
chosen at random.

3.2. Training scheme

Experiments were performed on a continuous digit string
recognition task on a German and a Dutch database. We
use continuous Gaussian mixture emission distributions
with a globally pooled variance vector.

The general training scheme proceeds as follows: First,
we apply ML training using Viterbi alignment and the
maximum approximation. Then, using the ML references
as baseline, CT and RT are performed by iterating the
reestimation equations given in [13]. In CT, in each itera-
tion step we use the recognized text, obtained by a recog-
nition pass on the training corpus, as the general model
Wyen. In RT, in each iteration step we determine the “ri-
valizing text” from a 2-Best-List (obtained by a recogni-
tion pass) and the spoken text according to the algorithm
presented in [12]. After a predefined number of iterations
of CT or RT, respectively, we select the references yielding
the lowest error rate on the training corpus for evaluation.

3.3. Experiments on German digits

In the first series of experiments, we used the male part
of the SieTill corpus [4] for telephone line recorded Ger-
man connected digit strings. This corpus consists of about
23k spoken digits in 7k sentences (190 speakers, about 2.5h
of speech) for both training and test. The acoustic model
consists of whole word HMMs (11 models including “zwo”
as synonyme for the digit “2”) plus one silence model. Ex-



periments are reported with high resolution acoustic mod-
els (28k densities, 108 per mixture). We used 11 cepstral
features plus derivatives of the first 9 coefficients. The
sampling rate was 8kHz, the frame shift 16ms. We ap-
plied cepstral mean subtraction on the sentence level and
a LDA transform resulting in a 24 component feature vec-
tor. Noise addition was performed as explained in section
3.1 at 12dB SNR. Figure 1 shows the word error rates
(WER) on the training corpus in dependence of the itera-
tion number.
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Figure 1: Word error rates (WER) in dependence of the
iteration number for corrective (CT) and rival training
(RT) on the SieTill male training corpus with additive
Gaussian white noise, target SNR of 12dB. The isolated
points (+, %, *) represent the WER for a different noise
realisation (at the same target SNR of 12dB) for the re-
spective iteration number. The errorbar indicates the 95%
confidence level.

In general the individual recognition passes involved
in each iteration of discriminative training are performed
with the given fized noise realisation. Using artificial noise,
one has the opportunity to evaluate the estimated acoustic
models for different noise realisations, at the same target
SNR. In these lines, we have estimated discriminativeley
trained acoustic models using a fixed noise realisation, and
then evaluated them again on the training corpus using
a different noise realisation. These experiments indicate
to what extent the discriminatively trained models have
“adapted” to the specific noise realisation, instead of im-
proving model quality. Indeed, such a fitting to the noise
realisation has been observed, see figure 1, symbols +, X, *.
Nevertheless, the evaluation results are significantly bet-
ter for the discriminatively trained models than the corre-
sponding result for the ML baseline (iteration number 0 in
figure 1). It is particularly interesting to observe less noise
fitting for the RT models than for CT.

Evaluation results on the SieTill male test corpus are
presented in table 1, for maximum likelihood (ML) mod-
els, corrective training (CT) and rival training (RT). The
first table a) shows recognition results on test data with
additive Gaussian white noise, target SNR of 12dB, corre-
sponding to noise matched conditions. The second table
b) presents recognition results on clean test data, i.e. noise

mismatched conditions. The word penalty used for the
evaluation experiments has been optimized on the train-
ing corpus, separately for the ML, CT and RT models.

a) test data with target SNR of 12dB
| qu. || it. | WER || it. | WER | rel. impr.

[ ML | baseline error rate:(3.86 + 0.26)% |
[CT] 00 [16] 363 24 361 [ -65% |
RT [ 025 [[16 [ 351 [[25 [ 3.40 [ -11.9%
RT | 04 [[16 [ 358 [[24 ] 340 [ -11.9%

b) clean test data
| qu. JJit. | WER [ it. | WER | rel. impr.

[ ML | baseline error rate:(4.61 + 0.28)% |
[CT ] 00 [[16] 434 24 437 [ -52% |
RT | 0.25 || 16 4.27 25 4.03 -12.6%
RT 0.4 16 4.08 24 3.84 -16.7%

Table 1: Evaluation results on the SieTill male test cor-
pus, a) with additive Gaussian white noise, target SNR of
12dB (i.e. noise matched conditions), b) on clean test data
(noise mismatched conditions). The acoustic models were
trained on SieTill training data with additive Gaussian
white noise with target SNR of 12dB, according to max-
imum likelihood (ML), corrective (CT) and rival training
(RT). “it.” denotes the number of discriminative training
iterations, “qu.” the quantil value, and “rel. impr.” the
relative improvement compared to the ML baseline result.

Comparing the CT results after 16 and 24 iterations, we
obtained similar error rates on the test data, although the
training error rate still decreases (figure 1). In contrast,
RT yields still improvements on the test corpus continuing
training up to 25 iterations.

Summarizing, it can be seen that the discriminatively
trained models outperform the ML models on both noise
matched and noise mismatched conditions. The improve-
ments gained by rival training are larger than those ob-
tained by corrective training, and are significant on the
95% confidence level.

3.4. Experiments on Dutch digits

The second part of our experiments is carried out on the
Polyphone corpus for telephone line recorded Dutch con-
nected digit strings. For training, we used 4k sentences
of the Polyphone training corpus (31k digits, about 4.5h
of speech). The test corpus consists of 2k sentences (15k
digits). We used whole word HMMs (11 models includ-
ing a pronunciation variant for the digit “7”) plus one
silence model, in total 19k densities, 63 per mixture. A
different feature extraction was performed: here, we used
14 spectral coefficients and their first derivatives plus the
energy with first and second derivative, and applied recur-
sive long-term spectrum normalization (sampling rate and
frame shift as in section 3.3). Applying a LDA transform
resulted in a 31 component feature vector. The addition
of car noise was performed as described in section 3.1.

Evaluation experiments on the Polyphone test corpus



are carried out for noise matched conditions (test data
with additive car noise of target SNR of 12dB) and mis-
matched conditions (additive car noise with target SNR
of 6dB and clean test data). Table 2 presents evaluation
results for maximum likelihood (ML) and rival training
(RT, 12 iterations, quantil 0.4). These experiments are
carried out with a fized word penalty of 90000, which was
optimized on the training corpus for the ML models.

| noise level | | WER | rel gain |
12dB test data ML | 837 £0.5 —
(“matched”) RT | 566 £04 | -32.4%
6dB test data ML | 18.77 £ 0.6 —
(“mismatched”) | RT | 12.16 £ 0.5 | -35.2%
clean test data ML | 11.17 £ 0.5 —
(“mismatched”) | RT | 944 £ 0.5 | -156.5%

Table 2: Evaluation results on the Polyphone test cor-
pus with additive car noise of target SNR of 12dB (noise
matched conditions), target SNR of 6dB and clean test
data (noise mismatched conditions). Maximum likelihood
(ML) and rival training (RT, 12 iterations) was performed
on Polyphone training data with additive car noise, target
SNR of 12dB.

For all investigated conditions (matched: target SNR
of 12dB in both training and test, mismatched: different
target SNR in test and in training), we obsered significant
performance gains (15% up to 35%) by RT as compared
to ML.

4. DISCUSSION

We investigated the performance of maximum likeli-
hood, corrective and rival training for large scale acoustic
models trained on data with additive noise. The experi-
ments demonstrated that in spite of fitting the models to
the specific noise realisation, corrective and rival training
outperform maximum likelihood training significantly. We
conclude that discriminative training methods have the po-
tential to improve noise robustness even for high resolution
acoustic models trained on noisy data.

In general, no prior information about the noise level
of the test data is available. This requires to use a fixed
word penalty, which was in our experiments tuned on the
training data. In further experiments we observed that
in noise mismatched conditions, the optimal word penalty
depends on the noise level of the test data. Optimizing the
word penalty “a posteriori” on the test data, we found that
the RT acoustic models are less sensitive on that param-
eter than the ML models. However, in some mismatched
conditions, the performance of the “optimal” ML models
(with respect to the word penalty) was slightly better than
for RT.

In future work, it should be investigated if the noise ro-
bustness gained by discriminative training will add to the
improvements obtained by standard noise robustness tech-
niques. Also, a comparison with lattice based discrimina-
tive training methods (MMI, MCE) might be performed.
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