
A BLOCK PRIORITY BASED INSTRUCTION CACHING SCHEME
FOR MULTIMEDIA PROCESSORS

Jiyang Kang and Wonyong Sung

School of Electrical Engineering
Seoul National University

Shinlim-dong, Gwanak-gu, Seoul 151-742 KOREA
E-mail: fjiyang, wysungg@dsp.snu.ac.kr

ABSTRACT

In this paper, a new instruction caching scheme that utilizes the
block priority information is proposed mainly targeted for embed-
ded multimedia processors. The block priority information is ob-
tained by profiling application programs. The goal of this caching
scheme is to keep more important code blocks longer using the
block priority information, which programmers provide by ana-
lyzing the profiling results of multimedia applications. In addition
to a new caching scheme, the methods for determining the priority
of each code block are also developed and their performances are
evaluated using real multimedia applications. The experimental
results show that the cache miss ratio can be reduced up to nearly
a half of that of the normal LRU replacement scheme although the
improvement depends on the cache size.

1. INTRODUCTION

Many DSP or multimedia processors have employed internal mem-
ories, such as on-chip RAM and ROM, instead of cache memories
[1] [2] [3]. On-chip memory spaces are not only linear, contigu-
ous and addressable, but most importantly ensure the access time,
which is critical for real-time applications. However, as the size
of multimedia applications grows, the limited spaces of on-chip
memories become hard to manage, especially in the case of in-
struction memory due to the need of sophisticated address conver-
sion.

In contrast, cache memories are very convenient in that case,
becausecaches usually do not require user management and, more-
over, are able to contain multiple hot-spot codes from different
parts of more than one application. For that reason, some of re-
cently developed multimedia processors are employing flexible in-
ternal memory structures which can also be configured as instruc-
tion cache memories [4]. Cache memories need a replacement
strategy to determine which cache line should be discarded when
a cache miss occurs. Note that conventional caching scheme, as far
as the authors know, do not assign different weights to each code
segment.

To compensate for the dynamic behavior of a cache, various
hardware or software instruction prefetching techniques can be
employed [5]. However, if the program execution path is differ-
ent from the instruction prefetch path due to branches, jumps, and
function calls, the prefetched block may not be used. This wasted

This work was supported by the Brain Korea 21 Project and the Na-
tional Research Laboratory program.

prefetch can cause increase in memory traffic, cache pollution and
unnecessary power consumption, which makes it unacceptable for
low-power portable systems.

In this paper, we propose a new caching scheme focused on the
applications of multimedia processors to combine the advantages
of both internal memory and cache. The proposed caching scheme
assigns priorities to each code block, and tries to keep more impor-
tant code blocks longer in the case of set associative caches. The
priority information is specified by a programmer by analyzing the
regular program behavior of multimedia applications.

This paper is organized as follows. In Section 2, the proposed
cache architecture is presented. A few proposed block prioritiza-
tion methods that can be categorized into static and dynamic are
shown in Section 3. In Section 4, the experimental environment
and results are presented. Finally, Section 5 concludes this paper.

2. THE PROPOSED CACHE ARCHITECTURE

We assume that the candidate cache organizations for an embed-
ded multimedia processor would be either a direct mapped or a set
associative cache considering the cost-sensitive nature of embed-
ded multimedia applications. With an n-way set associative cache,
there are n different sets of cache lines to choose from when a
cache miss occurs. A mostly used replacement policy to deter-
mine which cache line should be discarded is the LRU (Least Re-
cently Used) algorithm [6]. This algorithm keeps track of when
each cache line has been accessed by ordering cache entries in a
stack structure. When a cache line is needed to load new program
memory locations, the algorithm selects the cache line that has not
been read from for the longest time.

In contrast, our proposed caching scheme utilizes the priority
information of each code block given by a programmer as well as
the LRU stack. Actually, the priority information can override the
LRU stack state, as is shown in Fig. 1. If there are any cache
lines with the priority 0, which is the lower priority, the victim for
replacement is chosen among only the priority-0 lines according
to the LRU policy. However, in the case when all the candidate
lines are of the same priority, the cache behaves in the same way
with the normal LRU replacement policy. Note that the proposed
block prioritizing scheme can also be applied to other replacement
policies, e.g., random and FIFO, with minor modifications.

In order to specify the priority information for a given code,
instead of directly specifying a priority bit in the instruction word,
a two level scheme is employed, as is illustrated in Fig. 2. First,
on top of the most significant bit of the instruction address space, a



A

D

B

C

0

0

1

1

MRU

LRU

Tag Priority

E

A

B

C

0

0

1

1

MRU

LRU

E

A

D

B

0

0

0

1

MRU

LRULRU

Proposed

Fig. 1. Proposed cache replacement scheme

two-bit address header field is concatenated. This field represents
the number of the code block where this instruction belongs to,
and has no effect on the program control flow. Using a branch
instruction referencing a full-length address rather than an offset
value, e.g., branch-by-register-value, the programmer can specify
the number of the code block starting at the branch target address.
Second, a dedicated field (CPF: Cache Priority Flag) in the PSR
(Processor Status Register) indicates the number of the code block
whose priority is currently set to one, as is shown in Fig. 2-(b).
The priority of the current code block is determined to be one if
the CPF bit corresponding to the number of the current code block
is set. This scheme is advantageous because it can change the
priority dynamically during the program execution.

3. BLOCK PRIORITIZATION METHODS

We developed a total of five methods, including static and dy-
namic, to determine the priority of a given code block. The meth-
ods are categorized into static or dynamic priority methods accord-
ing to whether the priority of a code block can be changed during
the execution time or not.

3.1. Static priority methods

We propose two static block prioritization methods that need a user
specified parameter 
.

� AC (Access Count) method: This method utilizes the profil-
ing information for which all the basic blocks in a program
are sorted by the number of times each basic block is exe-
cuted. Basic blocks with the rank within the top 
 percent
are given the priority of 1.

� RR (Reuse Ratio) method: We first classify the memory
reference trace by its cache index. Then, for each cache
line, we count the number of the cases when the line is ac-
cessed again within a window of fixed size since its last ac-
cess, as illustrated in Fig. 3. This cache line ‘reuse’ count is
summed up on a per-basic-block basis. Finally, all the basic
blocks are sorted by the reuse ratio, i.e., reuse count divided
by the total access count, and the top 
 percent basic blocks
are given the priority of 1.

3.2. Dynamic priority methods

With the static priority approaches, it is possible that some code
blocks of priority-1 can remain on the cache even when they are

24bit address(16MB)

25 24 23 0

real address field(24bit)

concatenated 
address header 

field (2bit)

2bit block no

0

S-no

2

3

priority block no 0

1 priority block no 1

priority block no 2

priority block no 3

A

B

C

D

0:1000

1:1200

2:1400

3:1600

instruction memory space

(a) Current block number specified in an address field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0PSR

CV reservedZN CPF reserved

block no 3 block no 2 block no 1 block no 0

A

B

C

D

E

0:1000

1:1200

2:1400

1:1600

0:1800

cache priority flag
0 0 1 0

priority=1

priority=0

priority=1

priority=0

priority=0

(b) Active priority block number specified in the PSR

Fig. 2. Block priority specification

no more needed. To alleviate this problem, we introduce dynamic
priority methods so that the priorities of unnecessary cache lines
can be turned off and eventually have them replaced sooner.

� NDP (N De-Prioritization) method: In this method, a code
block with priority-1 is deprioritized when it is cached but
not accessed for the duration of N cycles. For our experi-
ments, 10000 is chosen for N .

� LDP (LRU De-Prioritization) method: If a cache block is
the LRU but not victimized because it is prioritized, then
its priority is reset. This corresponds to giving a second
chance to a prioritized LRU victim, and has the benefit of
being simple enough to be implemented even in hardware.

� Hand (Hand tuning) method: Since that most multimedia
applications show regular behavior at run time, application
programmers can conduct an optimal tuning of when to pri-
oritize or deprioritze a code block. We believe that this ap-
proach, though it may be time-consuming and tedious, will
give the best performance in the end.

Note that these dynamic priority methods can utilize the static
methods to determine the initial priority value of each code block.



E C B D A B C D E

time read read again: reuse++

…

set #0

index

TAG index

address

moving window
TAG history

per index

set #2
set #1 set #3

Fig. 3. Counting cache line reuse in the RR method

Table 1. Description of benchmarks and simulation parameters
Description Program # of Mem. Warm Up

Size References Period

H.263 Encoder 23KB 22M 100K
AC-3 Decoder 14KB 12M 100K

Mixed (H.263+AC-3) 37KB 50M 100K

4. EXPERIMENTAL RESULTS

We used an H.263 video encoder [7] and an AC-3 audio decoder
[8] for performance evaluation. We also employed a mixed trace
of H.263 and AC-3, in order to investigate the performance when
multiple applications are running simultaneously. This trace was
generated under the assumption that the context is switched ev-
ery 10 million cycles, which corresponds to 33 ms on a 300 MHz
processor. All traces used for these experiments are tens of mil-
lions of memory references long, as presented in Table 1. As for
the cache organization, we will concentrate on 4-way associative
caches with the line size of 32 bytes in this paper.

For the AC and the RR methods, the experiment results were
obtained as the 
 value was varied in 10 % increments from 10 %
to 100 %. Because a small number of basic blocks tends to dom-
inate the basic block access count, as is suggested by the 90/10
locality rule [6], the 
 value was additionally varied in 1 % incre-
ments from 1 % to 20 % for the AC method.

Using the benchmarks described above, we evaluate the per-
formance of the proposed caching scheme with various block pri-
oritization methods and show the experimental results in Fig. 4. In
all the graphs of Fig. 4, the solid lines represent the cache miss ra-
tio and the dashed lines represent the cache miss ratio normalized
by that of the LRU scheme. For the AC and the RR methods, only
the cases with the lowest miss ratio are presented in the graphs.
Their corresponding 
 values are shown in Table 2.

The experimental results of static block prioritization methods
with H.263 and AC-3 are presented in Fig. 4-(a) and (b). The
results show that the AC method performs slightly better than the
RR method in case of H.263, and much better in case of AC-3.
The geometric means of the normalized cache miss ratio of the
AC method are shown to be 83.0 % (H.263) and 81.6 % (AC-
3), respectively. In comparison, those values of the RR method
are 83.1 % (H.263) and 91.5 % (AC-3), respectively. Interestingly,
the performance improvement is more pronounced when the cache
size is around the ‘knee’ of the cache miss ratio curve, that is to

Table 2. 
 values chosen for Fig. 4 (shown in percent)
Benchmark 512 1K 2K 4K 8K 16K 32K

H.263, AC 65 80 1 8 25 60 X
H.263, RR 40 80 5 10 30 60 X
AC-3, AC 4 7 8 19 25 X X
AC-3, RR 10 20 25 30 40 X X
Mixed, AC 65 7 60 12 30 60 40
Mixed, RR 40 20 95 15 30 60 75

(Note: ‘X’ means that all 
 yield same results)

say, when the cache is neither too large nor too small. For example,
the geometric mean of the normalized miss ratio when the cache
size varies from 4 KB to 16 KB is shown to be 65.3 % in case of
H.263 with the AC method. The lowest normalized miss ratios we
can obtain are 53.0 % (H.263, 16 KB) and 64.1 % (AC-3, 8KB),
both with the AC method.

The experimental results of static block prioritization methods
with the mixed trace of H.263 and AC-3 are shown in Fig. 4-(c).
In this figure, other than the AC and the RR methods, we show
another case named as Best. Because the two applications can
be independently prioritized, a wide range of experimental results
is obtained by applying different 
 values and methods to each
program. The case that yields the best performance among them is
chosen as the ‘Best’. In general, it is expected that the cache miss
ratio will be increased when multiple programs are in execution
because of cache pollution. Our results show that the proposed
caching scheme is more effective under such multiprogramming
situations.

Figure 4-(d) shows the experimental results of dynamic prior-
ity methods. Only the case of H.263 is shown because of limited
paper space. The NDP and LDP methods were implemented on
top of one of the static methods with the 
 value shown in Ta-
ble 2. For the Hand methods, we determined the priority of each
function of the H.263 application code by intuition. The results
show that the NDP method obtained a slight gain over the static
methods in terms of the normalized cache miss ratio that results in
82.4 % when compared to 83.0 % of the AC method. However,
the LDP and Hand methods performed worse with the normalized
cache miss ratio of 87.0 % and 94.3 %, respectively, although they
are still better than the normal LRU algorithm. Looking at these
results, we note that while dynamic deprioritization schemes can
improve the performance of the static priority methods, they can
actually perform worse if not implemented properly. Moreover,
it is also suggested that the proposed static methods can achieve
excellent performance with less efforts compared to the manual
prioritization method which depends on the experience and know-
how of a programmer.

5. CONCLUDING REMARKS

In this paper, we have investigated the potential for improving
cache performance by providing a new caching scheme for embed-
ded multimedia processors, which allows the programmer to selec-
tively prioritize parts of cache blocks. Several static and dynamic
block prioritization methods for the proposed caching scheme are
also developed and their performances are evaluated using a few
real multimedia applications. The experimental results show that
the cache miss ratio can be reduced up to nearly a half of that of



0.0%

1.0%

2.0%

3.0%

4.0%

5.0%
M

is
s 

R
at

io
(s

ol
id

)

0%

20%

40%

60%

80%

100%

120%

N
or

m
al

iz
ed

 M
is

s 
R

at
io

(d
as

he
d)

LRU 4.3483% 3.2622% 3.2313% 3.1941% 2.9799% 0.0650% 0.0018%

AC 4.3458% 3.2621% 3.1552% 2.6881% 1.8587% 0.0344% 0.0018%

RR 4.1882% 3.2620% 3.2027% 2.7190% 1.8342% 0.0356% 0.0018%

Norm. LRU 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Norm. AC 99.9% 100.0% 97.6% 84.2% 62.4% 53.0% 100.0%

Norm. RR 96.3% 100.0% 99.1% 85.1% 61.6% 54.7% 100.0%

512B 1KB 2KB 4KB 8KB 16KB 32KB

(a) H.263, static

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

M
is

s 
R

at
io

(s
ol

id
)

0%

20%

40%

60%

80%

100%

120%

N
or

m
al

iz
ed

 M
is

s 
R

at
io

(d
as

he
d)

LRU 9.8226% 5.9987% 1.2871% 0.8787% 0.2401% 0.0004% 0.0004%

AC 8.0545% 4.2142% 1.0596% 0.6947% 0.1538% 0.0004% 0.0004%

RR 9.3534% 4.8336% 1.2617% 0.7912% 0.1908% 0.0004% 0.0004%

Norm. LRU 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Norm. AC 82.0% 70.3% 82.3% 79.1% 64.1% 100.0% 100.0%

Norm. RR 95.2% 80.6% 98.0% 90.0% 79.5% 100.0% 100.0%

512B 1KB 2KB 4KB 8KB 16KB 32KB

(b) AC-3, static

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

M
is

s 
R

at
io

(s
ol

id
)

0%

20%

40%

60%

80%

100%

120%

N
or

m
al

iz
ed

 M
is

s 
R

at
io

(d
as

he
d)

LRU 6.5200% 4.3366% 2.4326% 2.2359% 1.8497% 0.0419% 0.0023%

AC 6.5188% 4.1486% 2.4320% 1.9714% 1.1910% 0.0273% 0.0022%

RR 6.4447% 4.3366% 2.4326% 2.0505% 1.1800% 0.0260% 0.0022%

Best 5.7190% 3.6258% 2.4315% 1.9470% 1.1528% 0.0254% 0.0022%

Norm. LRU 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Norm. AC 100.0% 95.7% 100.0% 88.2% 64.4% 65.1% 94.9%

Norm. RR 98.8% 100.0% 100.0% 91.7% 63.8% 62.1% 97.7%

Norm. Best 87.7% 83.6% 100.0% 87.1% 62.3% 60.6% 95.0%

512B 1KB 2KB 4KB 8KB 16KB 32KB

(c) Mixed, static

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

M
is

s 
R

at
io

(s
ol

id
)

0%

20%

40%

60%

80%

100%

120%

N
or

m
al

iz
ed

 M
is

s 
R

at
io

(d
as

he
d)

LRU 4.3483% 3.2622% 3.2313% 3.1941% 2.9799% 0.0650% 0.0018%

NDP 4.1174% 3.2931% 3.1552% 2.6833% 1.8281% 0.0348% 0.0018%

LDP 4.1390% 3.2621% 3.2391% 3.1907% 2.2310% 0.0344% 0.0018%

Hand 4.3483% 3.2622% 3.2313% 3.1854% 2.0898% 0.0618% 0.0018%

Norm. LRU 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Norm. NDP 94.7% 100.9% 97.6% 84.0% 61.3% 53.5% 100.0%

Norm. LDP 95.2% 100.0% 100.2% 99.9% 74.9% 53.0% 100.0%

Norm. Hand 100.0% 100.0% 100.0% 99.7% 70.1% 95.0% 100.0%

512B 1KB 2KB 4KB 8KB 16KB 32KB

(d) H.263, dynamic

Fig. 4. Experimental results and performance comparison

the normal LRU replacement scheme although the improvement
depends on the cache size. This caching scheme can also be ap-
plied for the data cache with minor modifications.

There are several possible areas for future work. Additional
experiments considering different cache organizations such as vary-
ing associativity and line size are currently in progress. The devel-
opment of more effective dynamic prioritization methods leaves
room for further research.

6. REFERENCES

[1] Buyer’s Guide to DSP Processors, Berkeley, CA: Berkeley
Design Technology, Inc., 1999.

[2] E. A. Lee, “Programmable DSP architectures: Part I,” IEEE
ASSP Magazine, vol. 5, no. 4, pp. 4–19, Oct. 1988.

[3] E. A. Lee, “Programmable DSP architectures: Part II,” IEEE
ASSP Magazine, vol. 6, no. 1, pp. 4–14, Jan. 1989.

[4] TMS320C62xx CPU and Instruction Set Reference Guide,
Houston,Texas Instruments Inc., 1997.

[5] J. Pierce and T. Mudge, “Wrong-path instruction prefetching,”
in Proc. of the 29th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Dec. 1996, pp. 165–175.

[6] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, San Mateo, CA: Morgan Kaufmann
Publishers, Jan. 1990.

[7] ITU Telecom. Standardization Sector of ITU, “Video coding
for low bitrate communication,” ITU-T Draft Recommenda-
tion H.263, Mar. 1996.

[8] United States Advanced Television Systems Committee
(ATSC), Digital Audio Compression Standard (AC-3), Doc.
A/52, Dec. 1995.


