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ABSTRACT

In this paper, a new instruction caching scheme that utilizes the
block priority information is proposed mainly targeted for embed-
ded multimedia processors. The block priority information is ob-
tained by profiling application programs. The goal of this caching
scheme is to keep more important code blocks longer using the
block priority information, which programmers provide by ana-
lyzing the profiling results of multimedia applications. In addition
to anew caching scheme, the methodsfor determining the priority
of each code block are also developed and their performances are
evaluated using real multimedia applications. The experimental
results show that the cache miss ratio can be reduced up to nearly
ahalf of that of the normal LRU replacement scheme although the
improvement dependson the cachesize.

1. INTRODUCTION

Many DSP or multimedia processorshaveemployedinternal mem-
ories, such ason-chip RAM and ROM, instead of cache memories
[1] [2] [3]. On-chip memory spaces are not only linear, contigu-
ous and addressable, but most importantly ensure the accesstime,
which is critical for real-time applications. However, as the size
of multimedia applications grows, the limited spaces of on-chip
memories become hard to manage, especialy in the case of in-
struction memory dueto the need of sophisticated address conver-
sion.

In contrast, cache memories are very convenient in that case,
becausecachesusually do not require user management and, more-
over, are able to contain multiple hot-spot codes from different
parts of more than one application. For that reason, some of re-
cently devel oped multimedia processorsare employing flexible in-
ternal memory structures which can also be configured as instruc-
tion cache memories [4]. Cache memories need a replacement
strategy to determine which cache line should be discarded when
acachemissoccurs. Notethat conventional caching scheme, asfar
as the authors know, do not assign different weights to each code
segment.

To compensate for the dynamic behavior of a cache, various
hardware or software instruction prefetching techniques can be
employed [5]. However, if the program execution path is differ-
ent from the instruction prefetch path due to branches, jumps, and
function calls, the prefetched block may not be used. Thiswasted
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prefetch can causeincrease in memory traffic, cache pollution and
unnecessary power consumption, which makesit unacceptablefor
low-power portable systems.

In this paper, we proposeanew caching schemefocused onthe
applications of multimedia processorsto combine the advantages
of both internal memory and cache. The proposed caching scheme
assignsprioritiesto each codeblock, and tries to keep more impor-
tant code blocks longer in the case of set associative caches. The
priority information is specified by aprogrammer by analyzing the
regular program behavior of multimedia applications.

This paper is organized asfollows. In Section 2, the proposed
cache architecture is presented. A few proposed block prioritiza-
tion methods that can be categorized into static and dynamic are
shown in Section 3. In Section 4, the experimental environment
and results are presented. Finally, Section 5 concludesthis paper.

2. THE PROPOSED CACHE ARCHITECTURE

We assume that the candidate cache organizations for an embed-
ded multimedia processor would be either adirect mapped or a set
associative cache considering the cost-sensitive nature of embed-
ded multimedia applications. With an n-way set associative cache,
there are n different sets of cache lines to choose from when a
cache miss occurs. A mostly used replacement policy to deter-
mine which cache line should be discarded is the LRU (Least Re-
cently Used) algorithm [6]. This algorithm keeps track of when
each cache line has been accessed by ordering cache entriesin a
stack structure. When a cacheline is needed to load new program
memory locations, the algorithm sel ectsthe cacheline that has not
been read from for the longest time.

In contrast, our proposed caching scheme utilizes the priority
information of each code block given by a programmer aswell as
the LRU stack. Actually, the priority information can override the
LRU stack state, asis shown in Fig. 1. If there are any cache
lines with the priority 0, which isthe lower priority, the victim for
replacement is chosen among only the priority-0 lines according
to the LRU policy. However, in the case when al the candidate
lines are of the same priority, the cache behavesin the same way
with the normal LRU replacement policy. Note that the proposed
block prioritizing scheme can also be applied to other replacement
policies, e.g., random and FIFO, with minor modifications.

In order to specify the priority information for a given code,
instead of directly specifying a priority bit in the instruction word,
atwo level schemeis employed, asisillustrated in Fig. 2. First,
ontop of the most significant bit of the instruction address space, a
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Fig. 1. Proposed cache replacement scheme

two-bit address header field is concatenated. This field represents
the number of the code block where this instruction belongs to,
and has no effect on the program control flow. Using a branch
instruction referencing a full-length address rather than an offset
value, e.g., branch-by-register-value, the programmer can specify
the number of the code block starting at the branch target address.
Second, a dedicated field (CPF: Cache Priority Flag) in the PSR
(Processor Status Register) indicates the number of the code block
whose priority is currently set to one, asis shownin Fig. 2-(b).
The priority of the current code block is determined to be one if
the CPF bit corresponding to the number of the current code block
is set. This scheme is advantageous because it can change the
priority dynamically during the program execution.

3. BLOCK PRIORITIZATION METHODS

We developed a total of five methods, including static and dy-
namic, to determine the priority of a given code block. The meth-
ods are categorized into static or dynamic priority methodsaccord-
ing to whether the priority of a code block can be changed during
the execution time or not.

3.1. Static priority methods

We proposetwo static block prioritization methodsthat need auser
specified parameter ~.

e AC (AccessCount) method: Thismethod utilizesthe profil-
ing information for which all the basic blocksin aprogram
are sorted by the number of times each basic block is exe-
cuted. Basic blockswith the rank within the top v percent
are given the priority of 1.

¢ RR (Reuse Ratio) method: We first classify the memory
reference trace by its cache index. Then, for each cache
line, we count the number of the caseswhen theline is ac-
cessed again within awindow of fixed size sinceits last ac-
cess, asillustrated in Fig. 3. Thiscacheline ‘reuse’ countis
summed up on a per-basic-block basis. Finally, all thebasic
blocksare sorted by thereuseratio, i.e., reuse count divided
by the total accesscount, and thetop v percent basic blocks
are given the priority of 1.

3.2. Dynamic priority methods

With the static priority approaches, it is possible that some code
blocks of priority-1 can remain on the cache even when they are
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no more needed. To aleviate this problem, we introduce dynamic
priority methods so that the priorities of unnecessary cache lines
can be turned off and eventually have them replaced sooner.

¢ NDP (N De-Prioritization) method: In this method, a code
block with priority-1 is deprioritized when it is cached but
not accessed for the duration of N cycles. For our experi-
ments, 10000 is chosen for N.

¢ LDP (LRU De-Prioritization) method: If a cache block is
the LRU but not victimized becauseit is prioritized, then
its priority is reset. This corresponds to giving a second
chanceto a prioritized LRU victim, and has the benefit of
being simple enough to be implemented even in hardware.

e Hand (Hand tuning) method: Since that most multimedia
applications show regular behavior at run time, application
programmers can conduct an optimal tuning of when to pri-
oritize or deprioritze a code block. We believe that this ap-
proach, though it may be time-consuming and tedious, will
give the best performancein the end.

Note that these dynamic priority methods can utilize the static
methodsto determine the initial priority value of each code block.
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Table 1. Description of benchmarksand simulation parameters

Description Program | #of Mem. | Warm Up
Size References | Period
H.263 Encoder 23KB 22M 100K
AC-3 Decoder 14KB 12M 100K
Mixed (H.263+AC-3) | 37KB 50M 100K

4. EXPERIMENTAL RESULTS

We used an H.263 video encoder [7] and an AC-3 audio decoder
[8] for performance evaluation. We aso employed a mixed trace
of H.263 and AC-3, in order to investigate the performance when
multiple applications are running simultaneously. This trace was
generated under the assumption that the context is switched ev-
ery 10 million cycles, which correspondsto 33 ms on a 300 MHz
processor. All traces used for these experiments are tens of mil-
lions of memory references long, as presented in Table 1. Asfor
the cache organization, we will concentrate on 4-way associative
cacheswith the line size of 32 bytesin this paper.

For the AC and the RR methods, the experiment results were
obtained asthe v value was varied in 10 % increments from 10 %
to 100 %. Becausea small number of basic blocks tends to dom-
inate the basic block access count, as is suggested by the 90/10
locality rule [6], the v value was additionally varied in 1 % incre-
ments from 1 % to 20 % for the AC method.

Using the benchmarks described above, we evaluate the per-
formance of the proposed caching scheme with various block pri-
oritization methods and show the experimental resultsin Fig. 4. In
all the graphsof Fig. 4, the solid lines represent the cache miss ra-
tio and the dashed lines represent the cache miss ratio normalized
by that of the LRU scheme. For the AC and the RR methods, only
the cases with the lowest miss ratio are presented in the graphs.
Their corresponding ~ values are shown in Table 2.

The experimental results of static block prioritization methods
with H.263 and AC-3 are presented in Fig. 4-(a) and (b). The
results show that the AC method performs slightly better than the
RR method in case of H.263, and much better in case of AC-3.
The geometric means of the normalized cache miss ratio of the
AC method are shown to be 83.0 % (H.263) and 81.6 % (AC-
3), respectively. In comparison, those values of the RR method
are 83.1 % (H.263) and 91.5 % (AC-3), respectively. Interestingly,
the performanceimprovement is more pronounced when the cache
sizeis around the ‘knee’ of the cache miss ratio curve, that is to

Table2. v valueschosenfor Fig. 4 (shown in percent)
[Benchmark [ 512 [ 1K | 2K | 4K [ 8K [ 16K [ 32K |
H.263,AC | 65 | 80 | 1 8 | 25 | 60 X
H263,RR | 40 | 80 | 5 | 10 | 30 | 60 X
AC-3,AC 4 7 8 19 | 25 X X
AC-3,RR | 10 | 20 | 25 | 30 | 40 | X X
Mixed, AC | 65 7 | 60|12 |30 | 60 40
Mixed, RR | 40 [ 20 | 95 | 15 | 30 | 60 75

(Note: ‘X’ meansthat al ~ yield same results)

say, when the cacheis neither too large nor too small. For example,
the geometric mean of the normalized miss ratio when the cache
size variesfrom 4 KB to 16 KB is shown to be 65.3 % in case of
H.263 with the AC method. Thelowest normalized missratios we
can obtain are 53.0 % (H.263, 16 KB) and 64.1 % (AC-3, 8KB),
both with the AC method.

The experimental results of static block prioritization methods
with the mixed trace of H.263 and AC-3 are shown in Fig. 4-(c).
In this figure, other than the AC and the RR methods, we show
another case named as Best. Because the two applications can
be independently prioritized, a wide range of experimental results
is obtained by applying different v values and methods to each
program. The casethat yields the best performance among them is
chosenasthe ‘Best’. In general, it is expected that the cachemiss
ratio will be increased when multiple programs are in execution
because of cache pollution. Our results show that the proposed
caching scheme is more effective under such multiprogramming
situations.

Figure 4-(d) showsthe experimental results of dynamic prior-
ity methods. Only the case of H.263 is shown because of limited
paper space. The NDP and LDP methods were implemented on
top of one of the static methods with the v value shown in Ta-
ble 2. For the Hand methods, we determined the priority of each
function of the H.263 application code by intuition. The results
show that the NDP method obtained a slight gain over the static
methodsin terms of the normalized cache missratio that resultsin
82.4 % when compared to 83.0 % of the AC method. However,
the L DP and Hand methods performed worse with the normalized
cachemiss ratio of 87.0 % and 94.3 %, respectively, although they
are still better than the normal LRU algorithm. Looking at these
results, we note that while dynamic deprioritization schemes can
improve the performance of the static priority methods, they can
actually perform worse if not implemented properly. Moreover,
it is also suggested that the proposed static methods can achieve
excellent performance with less efforts compared to the manual
prioritization method which depends on the experience and know-
how of a programmer.

5. CONCLUDING REMARKS

In this paper, we have investigated the potential for improving
cacheperformance by providing anew caching schemefor embed-
ded multimedia processors, which alowsthe programmer to selec-
tively prioritize parts of cache blocks. Severa static and dynamic
block prioritization methods for the proposed caching scheme are
also developed and their performances are evaluated using a few
real multimedia applications. The experimental results show that
the cache miss ratio can be reduced up to nearly a half of that of
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Fig. 4. Experimental results and performance comparison

the normal LRU replacement scheme although the improvement
depends on the cache size. This caching scheme can also be ap-
plied for the data cache with minor modifications.

There are severa possible areas for future work. Additional
experiments considering different cacheorganizationssuch asvary-
ing associativity and line size are currently in progress. The devel-
opment of more effective dynamic prioritization methods leaves
room for further research.
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