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ABSTRACT

We propose a directional smoothness measure for block-

based error concealment through spatial correlation. Image

structures revealed by consistent edge pro�les are very im-

portant for subjective visual quality. We treat the problem

of block reconstruction as consistent recovery of local im-

age structures. The directional smoothness measure eval-

uates structural consistency along edge elongation and is

used as the object function for block reconstruction. Cor-

rupted DCT coef�cients are recovered by smoothly extend-

ing various edge pro�les from surrounding areas to miss-

ing blocks. The reconstruction is adaptive to local image

structures. Consistent cross-edge sharpness and along-edge

smoothness are maximally preserved during the reconstruc-

tion. The proposed concealment method demonstrates en-

couraging improvement both in the subjective image quality

and in the reconstruction PSNR over conventional schemes.

It is applicable to various spatial and spectral interleaving

systems and a fast implementation is also proposed.

1. INTRODUCTION

The problem of recovering lost and damaged image data

is often encountered when image/video streams are trans-

mitted over noisy channels or congested networks. In this

paper, we address the error concealment problem for block-

based transform coded images by exploiting spatial corre-

lation. Speci�cally, the discrete cosine transform (DCT) is

considered. Block-based transform coding is widely used

by current compression standards including JPEG, MPEG

and H.261where the coded bit stream is vulnerable to trans-

mission error because insigni�cant bit error can cause sig-

ni�cant quality degradation to the decoded images. How-

ever, image/video data contains suf�cient spatial correlation

that makes error concealment possible.

With different spatial and spectral interleaving designs,

transmission errors can cause the loss of a few DCT coef�-

cients to the loss of an entire block. Using available infor-

mation in surrounding blocks to recover a lost one, the com-

monly used smoothness criterion [1, 2, 3] tends to blur the

image. A second-order derivative-based smoothness mea-

sure is introduced in [4] to alleviate the problem. As an

alternative, edge-based spatial interpolation schemes [5] �ll

in a missing block with values that are consistent with the

edges detected from surrounding pixels. However, these

schemes are not able to take advantage of any correctly

received coef�cient. Moreover, the reconstruction can be

misleading when the edge orientation inside the damaged

block deviates from its neighbors or when edge detection

is affected by quantization noise. Projection onto convex

sets (POCS)[6] has also been used for recovering damaged

blocks by iterative projections between spatial and spectral

constraints. POCS is computationally expensive and un-

pleasant blocky effects have been observed in the recovered

image in [6].

In contrast to the conventional approaches, we intend to

pursue consistent image structures revealed by local edge

pro�les when recovering damaged blocks. We recognize

the key role of structural consistency in achieving good vi-

sual quality and propose a new error concealment algorithm

in this paper. A directional smoothness measure is derived

to consistently extend the signal pro�les from surrounding

blocks to the damaged one. During the reconstruction, the

smoothness along edge elongation as well as the sharpness

across edges are maximally preserved. Hence the recon-

struction is able to achieve good visual quality. In the fol-

lowing, we �rst introduce the directional smoothness mea-

sure for structural consistency in section 2. We discuss the

recovery of lost DCT coef�cients in section 3. Section 4

reports experimental results and performance improvement

of the proposed method over the smoothness-based method

in [4]. Final conclusions are given in section 5.

2. DIRECTIONAL SMOOTHNESS MEASURE

Edges play an important role in the subjective image quality

because the human visual system is sensitive to the struc-

tural information revealed by edges. Over-smoothed edges

blur an image while broken and falsely reconstructed edges

cause unpleasant artifacts. Consistent edge pro�les, i.e. con-



sistent cross-edge sharpness and along-edge smoothness, en-

sure consistent image structures as well as good visual qual-

ity. In order to preserve structural consistency, we measure

the directional smoothness of image signal along the edge

elongation. First-order and second-order directional deriva-

tives are used here to serve the purpose.

Let 5f = [fx; fy]
0 denote the gradient vector of 2D

function f and denote partial derivatives by subscripts. The

magnitude and angular direction of the gradient are

k 5 fk =
q
f2x + f2y ; � = tan�1(fy=fx) (1)

The �rst and second-order directional derivatives of f in the

direction indicated by a unit vector ~n are given by

f
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~n = ~n � 5f; f
(2)

~n =
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0
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0
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If we take ~n to be orthogonal to the local gradient5f , i.e.
~n = [cos(� +

�
2
); sin(� +

�
2
)]
0 is the local tangent vector

pointing along the edge elongation, we have
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Denote pixel location with (i; j), the directional smoothness

measure over an image block ffi;jg is de�ned as
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where we assume fxy = fyx. The discrete approximations

of the partial derivatives are

fxx(i; j) = fi�1;j � 2fi;j + fi+1;j
fyy(i; j) = fi;j�1 � 2fi;j + fi;j+1
fxy(i; j) =

1
4
[fi+1;j+1 � fi�1;j+1 � fi+1;j�1 + fi�1;j�1]

(5)

With directional derivatives, the proposedmeasure eval-

uates how smoothly the local edge pro�le propagates along

the edge elongation. It provides a more faithful measure-

ment of structural consistency. When the minimum value of

the proposedmeasure is pursued to recover damaged blocks,

we suppress the signal variation along edge directions and

consequently allow various edge pro�les (sharpness and ori-

entation) to be inherited from surrounding image areas and

smoothly extended to damaged blocks. Note the �rst three

summation terms in the proposedmeasure (4) correspond to

the quadratic variation in [4] when � =
�
4
, i.e. the diago-

nal edge case. Compared to the smoothness measure used

in [4], the adaptive weighting w1;2 in the proposed measure

promotes adaptive treatment for blocks with different local

structures.

3. RECONSTRUCTION BY DIRECTIONAL

SMOOTHNESS MEASURE

Block-based DCT coding system divides an image intoM�

M blocks and performs block DCT. Transform coef�cients

are quantized and coded. Let fak;lg
M�1
k;l=0 represent the quan-

tized block DCT coef�cients and ffi;jg
M�1
i;j=0 be the pixel

values obtained by inverse DCT on fak;lg, then the DCT

transform pair can be written as [4]

a = T 0
f ; f = Ta (6)

where f and a are the vector representations of pixel val-

ues and transform coef�cients. Refer to [4] for details on

obtaining the transform matrix T . Let ac and âl be the vec-

tor representations of correctly received coef�cients and the

presumed estimate of damaged ones. Following (6), the re-

constructed vector of f is given by

f̂ = Tcac + Tlâl (7)

where Tc and Tl are matrices composed of the columns of T
corresponding to ac and âl. We use the directional smooth-

ness measure as the object function to recover âl. The re-

construction problem is to �nd the best estimate of damaged

coef�cients âl such that the recovered image f̂ minimizes

the directional smoothness measure	(̂f) over the damaged

block as de�ned in (4). To �nd the solution, we �rst rewrite

	(̂f ) in matrix form. Note if we use f̂xx to denote the vector

representation of the partial derivatives ffxx(i; j)g arranged
in the same order as in f̂ , then from (5) we have the linear

form

f̂xx = A1 f̂ + b1 (8)

A1 is the matrix for the second order differential operation

in the horizontal direction and b1 is a vector composed of

zeros and the boundary pixel values used to compute the

derivatives inside the damaged block. Similarly we de�ne

vectors f̂yy and f̂xy for ffyy(i; j)g and ffxy(i; j)g, and
have

f̂yy = A2 f̂ + b2; f̂xy = A3f̂ + b3 (9)

where Ai's are matrices for differential operations and bi's
are vectors composed of boundary pixels involved in the

differentiation. Let W1;2 be diagonal matrices with w1;2
i;j

being the diagonal elements, the smoothness measure can



then be written in matrix form

	(̂f) = (A1f̂ + b1)
0W1(A1 f̂ + b1) + (A2 f̂ + b2)

0
(I �W1)

�(A2f̂ + b2)� 2(A3f̂ + b3)
0W2((A1 +A2 )̂f + (b1 + b2))

= f̂
0Af̂ � b0f̂ + c

A = A0

1W1A1 +A0

2(I �W1)A2 � 2A0

3W2(A1 +A2)
b = �2A0

1W1b1 � 2A0

2(I �W1)b2 + 2(A0

1 +A0

2)W2b3
+ 2A0

3W2(b1 + b2)
c = b01W1b1 + b02(I �W1)b2 � 2b03W2(b1 + b2)

(10)

From (7) and (10), 	 is a quadratic function of âl, and the

optimal estimate is given by

@	
@âl

= (T 0

l (A+A0
)Tl)âl + T 0

l (A+A0
)Tcac � T 0

l b = 0

âl = (T 0

l (A+A0
)Tl)

�1T 0

l (b� (A+A0
)Tcac)

(11)

In the above discussion, we assume that the weighting ma-

trices W1;2 are known and the surrounding blocks are un-

corrupted. To obtain W1;2, we notice the de�nition in (4)

indicates that the weighting functions w
1;2
i;j are slowly vary-

ing functions in the vicinity of edges which is also a conse-

quence of structural consistency present in natural images.

Low order polynomial interpolation can be used to interpo-

late the weighting for the damaged block. We �rst �nd the

polynomialsP1;2(i; j) that best �tw
1;2
i;j in surrounding areas


N by solving the following least square problem,

min
X

(i;j)2
N

g(k 5 fi;jk)(P1;2(i; j)� w1;2
i;j )

2 (12)

P1;2(i; j) are then used to interpolate the weightingw
1;2
i;j in-

side the missing block. g(x) is an increasing function of x
and we set g(x) = x2 in the experiment. This means that

the weighting functions are determined mostly by the infor-

mation from the vicinity of edges. The preference for edge

information does not affect the reconstruction in smooth ar-

eas because smooth areas can be recovered from any di-

rection. Through polynomial interpolation, the weighting

termsw1;2 with the underlying edge orientation � are recov-
ered as functions slowly varying over the damaged block

and smoothly extending across block boundaries. Thus,

we resolve the situation where edge orientation in the dam-

aged block is different from the neighbors. Our experiment

shows that when block size is small, zero-th order interpola-

tion is suf�cient for the reconstruction. In this case, constant

weights associated with a dominant edge direction are inter-

polated as in (13) and used for the entire damaged block.

w1;2
= argmin

X
(i;j)2
N

g(k5 fi;jk)(w
1;2

� w1;2
i;j )

2

(13)

Subsequently, the expression in (10) can be further simpli-

�ed with W1;2 = w1;2 � I . Furthermore, if we quantize the

Table 1. PSNR(dB) of reconstruction using zeros substi-

tution (ZS), smoothness measure(SM), directional smooth-

ness measure(DSM) and its fast implementation (FDSM).

Type 1 None DC First 5AC All AC All

ZS 32.91 19.82 26.61 25.66 18.98

SM 32.91 32.00 31.23 28.76 27.20

DSM 32.91 32.26 31.74 29.78 28.71

FDSM 32.91 32.00 31.42 29.47 28.34

Type 2 None DC First 5AC All AC All

ZS 32.91 19.75 26.84 25.61 18.91

SM 32.91 31.45 30.41 27.73 26.62

DSM 32.91 32.22 31.53 29.06 28.12

FDSM 32.91 31.92 31.11 28.83 27.82

constant weights w1;2 to a set of pre-determined values and

use the quantized weights to evaluate âl (11), then matrix

computation in (11) can be converted off-line by computing

and storing a set of matrices for different quantized weights.

On-line concealment only needs to estimate the weights and

choose the corresponding reconstruction matrices.

When some of the boundary values are not available,

we set them to zero for the initial estimates of the lost co-

ef�cients. Damaged blocks are iteratively reconstructed us-

ing previously recovered boundary values until the recon-

structed values converge.

4. EXPERIMENTAL RESULTS

We tested the proposed algorithmon the 256�256grayscale

Lena image. Each 8 � 8 block undergoes a DCT and the

DCT coef�cients are quantized. Figure 1 shows the cor-

rupted imagewith all coef�cients lost in the damaged blocks

and two reconstruction results, one based on the smoothness

measure in [4] and the other based on the proposed direc-

tional smoothness measure. Two loss patterns are tested.

The �rst type of loss, shown in column (a), simulates the

situation where spatial interleaving scheme is adopted for

packetization, while the second type, shown in column (b),

simulates the situation with no spatial interleaving. The

damaged blocks spreading over the entire image contain a

variety of local structures. Four outer layers of surrounding

pixels are used in a zero-th order polynomial interpolation to

obtain the weighting terms for a damaged block. When con-

cealing consecutive block loss, the proposed method con-

verges much faster than [4]. Encouraging improvement in

visual quality for both types of loss is observed in �gure 1.

Local structures are smoothly and faithfully recovered by

the proposed scheme with much reduced artifacts.

The directional smoothnessmeasure-based concealment

also improves the peak signal-to-noise ratio (PSNR) quan-

titatively. Table 1 lists PSNR of the reconstruction results



(a) (b)

Fig. 1. Reconstruction results. (a)Type 1 loss. (b)Type 2

loss. First row: damaged image; second row: reconstruc-

tion with maximum smoothness measure; third row: recon-

struction with directional smoothness measure.

using zero substitution, the smoothness measure (SM) in

[4], the proposed directional smoothness measure (DSM) as

well as its fast implementation (FDSM) with weights quan-

tized into 16 levels. For both loss patterns, we simulate the

following situations, no coef�cient is lost, only DC coef�-

cients are lost, the �rst 5 AC coef�cients are lost, all AC co-

ef�cients are lost and the entire set of DCT coef�cients are

lost. In the most severe situation where all DCT coef�cients

are lost, the proposed method has 1.5dB PSNR improve-

ment. The comparison between SM-based concealment and

other concealment schemes is discussed in [4].

5. CONCLUSIONS

We demonstrate the importance of keeping structural con-

sistency for faithful error concealment through spatial cor-

relation. A directional smoothness measure is derived to re-

cover lost and damaged DCT coef�cients and ensures con-

sistent structure reconstruction. Various edge pro�les are

consistently extended to damaged blocks from uncorrupted

surrounding areas guided by adaptive weighting functions.

The proposed non-iterative concealment scheme takes ad-

vantage of any correctly received coef�cients and is suit-

able for various packetization designs with different spa-

tial and frequency interleaving schemes [2]. A fast imple-

mentation is also proposed. Compared to the conventional

smoothness-based schemes, the proposed concealmentmethod

demonstrates prominent improvement in the subjective im-

age quality as well as in the reconstruction PSNR.
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