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ABSTRACT

A parallel between Reed Solomon codes in the complex field and
multicarrier transmission using OFDM is first presented. This
shows that when the signal is sent over some channel composed
of Gaussian plus impulse noise, the impulse noise can be removed
by a procedure similar to channel decoding, using information car-
ried by the ”syndrome”. These results are first derived in a simple
situation (oversampled DMT, additive channel), which is merely
of theoretical interest. Several extensions are then provided in or-
der to increase the practical usefulness of the method. Simulations
combining classical convolutive codes with the above mentioned
approach are provided.

1. INTRODUCTION

The main idea behind OFDM is to split the transmitted data se-
quence into N parallel symbol sequences. This structure allows
the use of a very simple equalization scheme when the signal is
sent over multipath propagation channels. In fact, intersymbol in-
terference (ISI) can be avoided when a guard interval (IG) is imple-
mented between each block of time domain samples to be transmit-
ted. However, some carriers can be strongly attenuated, then it is
necessary to incorporate a powerful channel coder combined with
frequency and time interleaving. In this way, close coded bits are
not likely to fall simultaneously in a spectral null. Therefore, the
coded orthogonal frequency division multiplex (COFDM) tech-
nique has become extremely popular in many applications, such as
broadcasting, ADSL modems, Local area Networks (HiperLAN2).
However, in some of these applications, it is well known that chan-
nel noise is not only made from measurement (Gaussian) noise, but
also encompasses some large bursts of errors.

In this case, we propose to use the OFDM modulator as some
specific impulse noise canceller, the structure of which is well
suited to the nature of the problem (i.e. a single impulse shows
up as a single error), rather than counting on the classical chan-
nel coder to solve the problem. Practically, of course, both type
of codes will have to cooperate, in order to process both Gaussian
and impulse noise.

Note that the proposed approach makes use of techniques that
are similar to previous papers by Wolf [1] and Redinbo [2] . The
contributions of this paper are : (i) RS decoding in the complex
field is easily applied in OFDM system, (ii) they can be extended in
the sense that the pilot tones can be seen as additional syndromes,
(iii) the method still holds when ISI is present, (iv) a combination
of classical and complex codes is efficient under the presence of
Gaussian plus impulse noise.

2. TRANSMISSION SCHEME AND CONNECTION WITH
SPECTRAL CODES

2.1. Discrete model of OFDM system

A binary message is coded and mapped to a sequence of complex
data stream fIk(n)g which belong to a given constellation. The
OFDM system splits the initial data stream (to be transmitted at
rate Ts) into N substreams, each one being transmitted over its
own carrier. All symbols emitted during the same duration NTs
constitute an OFDM symbol I(n) = (I0(n) : : : IN (n))

T [3]. The
orthogonality property between carriers ensures the perfect recon-
struction of the emitted symbols at the receiver.

A discrete model of the OFDM system is easily obtained by
computing M samples of the signal to be sent onto the channel
during one OFDM symbol. i.e. MTe = NTs, Te � Ts (Te the
sampling period). Moreover, if one considers the simple multi-
carrier system where the prototype filter is a rectangular pulse of
duration NTs, modulated with spacing between carriers equal to
1=NTs, these samples are computed as :

ck(n) =

N�1X

m=0

Im(n� 1)e
2j�km

M

which is exactly the inverse discrete Fourier Transform (IDFT) of
the fIm(n � 1)g sequence enlarged by (M � N) zeroes. In the
following, we assume that M �N = 2t, t a positive integer.

At the receiver the Analog to Digital Converter (ADC) sam-
ples the signal r(n), at rate Te and a DFT is performed. Therefore,
the received signal is converted into the frequency domain fYkg,
where Yk is given by the following equation:

Yk = Ik +Nk ; 0 � k � N � 1

where Nk is the length M Fourier transform of the noise sequence
fnkg (see Fig.1)

2.2. Channel model and capacity

First assuming a memoryless channel, each emitted sample is mod-
ified by the channel according to

rk = ck + bk + wk; k 2 f0 : : :M � 1g

where wk is additive white Gaussian noise (AWGN) with zero
mean and variance �2w and bk is the impulse noise.

The impulse noise is an additive disturbance that arises pri-
marly from the switching electric equipment [4]. In the following,
the impulse noise is modeled as in [5] as:

bk = ekgk 8k 2 f0 : : :M � 1g



where ek stands for a Bernoulli process, an i.i.d. sequence of ze-
roes and ones with pr(ek = 1) = p, and gk is a complex white
Gaussian noise with zero mean and variance �2b such as �2b � �2w .
Note that this model assumes the presence of a large interleaver,
so that bursts of errors can be scattered along time, resulting in
independent noise sequences.

Under this model, the probability density of the channel noise
nk = bk + wk can be expressed as

p(n) = (1� p)G(n; 0; �2w) + pG(n; 0; (�2w + �2b ))

where G(n;mx; �x) is the Gaussian density with mean mx and
variance �2x.

This expression allows to compute the capacity of this chan-
nel, in order to estimate the impact of a given impulse noise on
the capacity of a Gaussian channel. Practically, this capacity has
been computed by an iterative procedure proposed by Blahut and
Arimoto [6] applicable to arbitrary discrete memoryless channels.

Fig.2 depicts the capacity of the “Gaussian plus Bernoulli Gaus-
sian” channel in bits per second normalized by the bandwidth of
the channel (W), as a function of P for several values of p, �b = 1,
�w = 6:10�2 . We note that, even for somewhat large values of
p, the capacity of the channel is approximately similar to that of
the AWGN channel. For example, if p = 10�2, and P=1, then the
capacity of the “Gaussian plus Bernoulli plus Bernoulli Gaussian”
channel is 4bit=s=Hz, which is approximately the same value as
for the AWGN channel. If p = 5:10�2 then we transmit at most
3.3 bits/s/Hz that means that we lost only 0.7 bit per second/Hz,
this decrease of capacity being due to the impulse error. However,
if no specific procedure is used in an OFDM system, it is unlikely
that such similar performances can be obtained : consider the case
of a 64 QAM constellation emitted over 64 subbands. Each im-
pulse drastically impairs 384 bits at a time, and it can be stated
that the OFDM demodulator acts as an impulsive noise ampli-
fier. . . This is clearly in favor of a processing taking into account
the specific nature of the impulsive noise and the OFDM system.

2.3. Spectral codes

We have seen above that implementing an OFDM modulation is
similar to adding consecutive null symbols at the input of the block
to be modulated. Since the zeroes emitted through a “Gaussian
plus Bernoulli Gaussian” channel are not recovered after demodu-
lation, a question arises: to have performance similar to the ones
of AWGN channel, is it possible to remove the impulse error with
the sole knowledge that some of the demodulator input should be
null?

The similarity between OFDM modulator and RS codes can be
used at that point, following the work by Blahut. It has been shown
in [7], that the ideas of spectral coding theory can be translated
in the frequency domain, i.e. over the complex field C. Reed
Solomon codes can be defined [7] as follow:

Definition 1 Let F contain an element of order M. The (M,M-2t)
Reed Solomon block length M with symbols in F is the set of all
vectors c whose spectrum (in F) satisfies: Ck = 0 8k 2 A where
A = fk0+1 : : : k0+2tg. This is described briefly as an (M,M-2t)
Reed Solomon code over F.

The spectrum of a Reed Solomon codeword lives in the same field
as the code word. Then, to form a Reed Solomon code, a block of

(2t) consecutive spectral components are chosen as parity frequen-
cies, (to be set to zero) and the remaining are information symbols.
Marshall [8] has shown that conventional decoding algorithm for
finite field cyclic codes could be employed for real and complex
numbers.

The basic remark that we have used in this work is that a dis-
crete sequence of complex numbers containing (2t) consecutive
zeroes are transmitted over the OFDM system, therefore, the out-
put of the OFDM modulator can be considered as a Reed Solomon
codeword (their spectrum contains consecutive zeroes). After trans-
mission over “Gaussian plus Bernoulli Gaussian” channel, the DFT
of the received discrete time sequence no longer has (2t) zeroes,
and this is due only to the channel. Hence, the OFDM modulator
can be seen as a complex-valued RS code, the correction capacity
is given by :

BCH Bound 1 if (2t consecutive frequencies belong to A ) then
(dmin > 2t+ 1 ).

where A is the set of the (2t) zeroes.

However, strictly speaking, there are more than (2t+1
2

) er-
rors if one uses our channel model : all samples are polluted by
noise. Therefore, we concentrate on the removal of the sole im-
pulse noise, considering the Gaussian component as background
noise. The classical decoding techniques have to be adapted to the
presence of this background noise.

3. DECODING ALGORITHM

The procedure is as follows : choose a classical decoding algo-
rithm, adapt it to the presence of the background noise, and correct
the estimated errors. Redinbo [2] recently presented a decoding
procedure for real number constructed in the discrete Fourier trans-
form (DFT) domain. In our work, performed simultaneously in the
context of joint source and channel coding [9], the basic algorithm
was different, since we used a modified Peterson-Gorenstein-Zierler
algorithm to locate and correct “impulse errors”, based only on a
syndrome evaluation (the (2t) consecutive zeroes that one should
observe at the output of the OFDM modulator in the absence of
noise).

After transmission, the corresponding received components of
fYkg will no longer be null (Fig.1)

Yk = Bk +�k; 8k 2 fN + 1 : : :M � 1g

where Bk if the DFT of the impulse noise bn, and �k that of the
background noise wn.

At the receiver, the correction of impulse noise must operate
on the (2t) syndromes Sk which are given by: Sk = YN+k�1; k =
1 : : : 2t.

There are two contributions in these terms : one is the Fourier
transform of the Gaussian background noise, hence is still Gaus-
sian, and the other one is a sum of Fourier transforms of impulses,
hence is a sum of complex sinusoids, the frequencies of which cor-
respond to the localization of the errors. The decoding problem is
thus the estimation of the number of sinusoids, together with their
frequencies and amplitudes, polluted by Gaussian noise. The two
main differences with classical signal processing situations are (i)
that the number of samples is orders of magnitude smaller than
usual, (ii) that one has the knowledge that the frequencies take in-
teger values.



The decoding algorithm works in three steps: (i) estimate the
number � of impulse errors (ii) seek the error locations and (iii)
correct the errors. Classically, the procedure is finished at this step.
We have added a control step, which is able to carefully estimate
whether the decoding procedure has worked correctly. In this way,
we are able to begin a truncated enumeration of all possible er-
ror localizations (the most sensitive part of the algorithm) among
the most likely ones. . . This truncated enumeration is necessary be-
cause of the presence of the background noise which introduces
some fuzziness in the computations.

4. EXTENSIONS

The procedure just described cannot be applied as such in OFDM
system, since the 2t zeroes do not correspond to a part of the spec-
trum which is actually available (analog shaping filters are here to
limit the bandwidth). Only a small number of these zeroes can be
practically used. However, in many cases, pilot tones are emitted,
for synchronization or channel estimation purposes. These pilot
tones consist in known symbols that are emitted, scattered among
the information ones.

We outline below that a procedure similar to that of the RS
decoding can be used in this situation. This is easily understood
by combining situations in which: (i) (2t) consecutive symbols
are known (and not null), (ii) the pilot symbols are uniformly dis-
tributed, and (iii) when the pilot symbols are uniformly distributed
and a channel C is considered in addition to the “Gaussian plus
Bernoulli Gaussian” channel .

Two extensions are trivial , and will not be detailed due to lack
of space :

� if the emitted symbols are known (rather than zero), the
extension consists in subtracting the known value. The rest
of the algorithm remains unchanged.

� if the OFDM system goes through a channel with ISI, one
uses the classical cyclic prefix procedure, which transforms
the ISI channel to a set of parallel multiplicative constants.
If this channel is known (which is assumed), divide by the
correct constant, and the algorithm explained above applies
with minimal modifications.

The only point which is more tricky is the extension when
the pilot tones are scattered among the symbols. A special case
when the pilot tones are regularly spaced can be deduced from the
Hartmann-Tzeng theorem [10] :

Theorem 1 Suppose that the field F contains an element of order
M and locate the syndromes in K blocks of size d�K. Then the
error correction capacity of the code is upper bounded by d�1

2
if

pgcd(M;K) = 1.

This theorem is easily used in a special case, when gcd(M;K) =
1 and blocks have size 1. So no loss in error correction capacity
occurs because d = 2t+1 then correction capacity is t. Therefore,
decoding can be performed in the same way as already explained.

5. SIMULATIONS

Due to short space, the simulations concentrate on the efficiency
of the impulse noise cancellation. The BER curves, and the com-
bination with classical coders will be presented in greater details
in a forthcoming paper.

A first simulation is concerned with the plain, initial algorithm
using only the consecutive null carriers, and the straightforward
analogy between OFDM systems and BCH codes. The total num-
ber of carriers is 65, the number of zeroes is 12, the probability
of impulsive noise p = 5:10�4 , �b = 4 and 4QAM symbols are
emitted. One can observe on Fig.3, where we plot 1/EQM (dB),
that the RS code in the complex domain has met the expectations,
since after decoding, the EQM between the emitted and received
symbols closely follows the curve containing the Gaussian noise
only.

The second simulation is reminiscent of the HiperLan2 stan-
dard, although we do not claim at present any practical usefulness
in this context. The number of carriers is M = 64 and the guard
interval has length D = 16 samples.This second curve also plots
the 1/EQM (dB), but in a situation containing a mixture of all ex-
tensions we have developed : Among the M carriers, 12 carri-
ers are null-carriers. Among the remaining, 52, 4 are fixed pilots
carrying known 4QAM symbols while 48 subcarriers, convey the
information. The zeroes and the pilot symbols are uniformly dis-
tributed. Low-level Gaussian noise samples with variance �2w are
added to each position independently, modeling the background
noise. We also included a channel C, which is a realization of the
typical channel Model A specified by Hiperlan2. For this simula-
tion, the parameter of the Bernoulli sequence is p = 10�3 and the
variance of the impulse noise �b = 2.

The algorithm also shows good behavior under these circum-
stances, since curve after correction of the impulse noise is only
marginally different from the curve obtained with Gaussian noise
only (see Fig.4).

Fig.5, shows the performances in terms of BER, under the
same conditions as those explained for Fig. 4. The improvement in
terms of EQM clearly also shows in terms of BER. Note that this
simulation was not containing any classical channel coder. The
question which remains to be answered concerns the amount of re-
dundancy which has to be assigned to the RS code in the complex
field (if the inherent one using the pilot tones is not sufficient) com-
pared to that which is devoted to the classical convolutive code.

6. CONCLUSION

In this paper we have described a procedure for removing impulse
noise in OFDM system. Implementing a digital OFDM modulator
often requires working with an oversampled version of the emit-
ted analog signal, this is functionally similar to add null consec-
utive symbols to the block to be transmitted. The impulse error-
correcting procedure is based on the relationship between Fourier
transform and Reed Solomon codes defined over the field of com-
plex numbers. A suitably modified Peterson-Gorenstein-Zierler
was examined as an alternative for determining impulse error lo-
cation. This procedure can also be applied when pilot symbol are
uniformly distributed in the output of the OFDM modulator. Many
extensions are under consideration, in order to increase the practi-
cal usefulness of this approach.
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Fig. 2. The “Gaussian plus Bernoulli Gaussian” channel capacity
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Fig. 3. Distortion performance when we consider a “Gaussian plus
Bernoulli Gaussian” channel, and consecutive syndrome locations
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Fig. 4. Distortion performance when we consider a channel C,
scattered null carriers and pilots tones
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