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ABSTRACT
A new Constrained Storage VQ (CSVQ) structure based on lin-

ear transforms and translates of a common root codebook is pro-
posed. The new VQ structure, named LT-CSVQ (Linear Translate
CSVQ), acts as a building block for multistage VQ implementations
(LT-CS-MSVQ), and significantly reduces storage requirements from
that required in tree-multistage VQ implementations. LT-CS-MSVQ is
most appropriate for medium rate multistage VQ implementations,
and is applied to the recently proposed vector enhancement of Said
and Pearlman’s Set Partitioning in Hierarchical Trees (SPIHT)
image coder, named VSPIHT.

1. INTRODUCTION
Vector extensions to popular scalar wavelet image coding

schemes like EZW [1] and SPIHT [2], have recently been proposed,
and named Vector EZW and Vector SPIHT (VSPIHT) respectively.
While lattice VQ based schemes [3]-[5] have fast algorithms, trained
VQ VSPIHT schemes [6]-[8] are superior in rate-distortion perfor-
mance. The main idea in VSPIHT is to classify groups of coefficients
over concentric hyperspheres of decreasing radii, and progressively
quantize them using classified tree-multistage VQ (TS-MSVQ) struc-
tures. A key factor affecting the efficiency of vector based successive
approximation encoders, such as VSPIHT, is the effectiveness of suc-
cessive refinement VQ systems used for quantization. Multistage VQ
(MSVQ), alternatively known as Residual VQ (RVQ) [9], [10], is a
natural candidate for such progressive refinement VQ applications.
Unfortunately, the performance of MSVQs degrade substantially with
the increase in the number of stages due to tree-entanglement, that
effectively reduces the codebook size from the allocated rate.
Although the suboptimalities introduced by RVQ with multiple stages
may be alleviated by the use of joint codebook design procedures, in
conjunction with more complex multiple path search procedures [11],
[12], such schemes are less effective for embedded coding applica-
tions, where the number of stages to which a vector will be decoded is
not known at the time of encoding.

Considering the above factors, the only reasonable way to
enhance the efficiency of trained successive refinement VQs is to
increase the storage. MSVQ and Tree-Structured VQ (TSVQ) [13],
[10], constitute two ends of the storage spectrum. While codebook
fan-out for MSVQ is unity at every stage, that for TSVQ increases
exponentially from stage to stage. For most applications including
VSPIHT, the codebook storage requirement as well as the training set
size requirement for TSVQ is untenable, while the performance of
MSVQ is unacceptable. Therefore, successive refinement VQ struc-
tures that achieve intermediate storage-efficiency trade-offs between
TSVQ and MSVQ, is of vital importance. The VSPIHT implementa-
tions presented in [6]-[8] use tree-multistage VQs to achieve a certain
intermediate trade-off. Unfortunately, they require a large storage, are
very rigid, and do not allow fine adjustments in storage and rate.

Chan and Gersho [14] developed a more sophisticated scheme
called Constrained-Storage VQ (CSVQ), that allows multiple sources
to be vector quantized with fewer codebooks by codebook sharing.
CSVQ can be readily combined with MSVQ to obtain Constrained
Storage Multistage VQs (CS-MSVQ) with arbitrary fan-outs. These
structures attempt reducing the suboptimalities of MSVQ by incre-

mental incorporation of memory into the stages. In order to improve
the storage-efficiency trade-off of CSVQ [14], Ramakrishnan et. at.
[15] recently proposed a generalized framework for CSVQ, using
shared codebooks chosen as subsets of a universal codebook. In this
paper, an alternative Linear Transformation (LT) constraint for CSVQ
is proposed, which for CS-MSVQ chains (LT-CS-MSVQ) with a
large number of stages, achieve an even better storage-efficiency
trade-off. The eventual goal is to replace the TS-MSVQ structures in
VSPIHT with these CS-MSVQ structures that are more flexible and
require less storage. Results are presented comparing LT-CS-MSVQ
with Chan and Gersho’s Unstructured CS-MSVQ (referred to as U-
CS-MSVQ in this paper), while possible combination with the uni-
versal codebook approach [15] is left as a future extension.

2. THE CS-MSVQ STRUCTURE
In a CS-MSVQ chain, all possible fanned out codebooks after

each stage, are merged in a controlled manner so that a desired effec-
tive fan-out is obtained. Since fan-out determines storage, which in
turn determines efficiency, an arbitrary trade-off between storage and
efficiency of successive refinement is achieved. The CS-MSVQ
structure is shown in Figure 1. Each stage uses a classified VQ
(CVQ) system, where the class of a vector residual is determined by
the indices transmitted at the previous stages. Further, the mapping
function that yields the class of the residual at the next stage is
obtained from the training data itself, and is considered an integral
part of the stage codebooks. In the diagram, x0 represents an input
vector. If the VQ itself is not classified, then the class index c0 of x0 is
taken as 0. For any stage i, the input consists of the ith residual xi and
the corresponding class index ci. The classified VQ associated with
the stage encodes xi to generate codevector yi and index Ii while the
next class mapping function Fi generates class index ci+1 from ci and
Ii. The residual is passed on to the next stage along
with class index ci+1.

The design effort in CS-MSVQ consists of designing the stage
CVQs as well as the mapping functions. While a truly optimal design
over all stages must account for all dependencies between the CVQs
and the mapping functions, in practice such schemes are hard to
design under reasonable complexity constraints. The design proce-
dures proposed in [14] are of a stage-wise greedy nature where the
objective is to do the best encoding at each stage. This methodology
also fits well with the objectives of embedded coding. Depending on
the nature of the CVQs, several types of CS-MSVQs can be defined.
The standard CS-MSVQ structure [14] is referred to as Unstructured
CS-MSVQ (U-CS-MSVQ), because unstructured CVQs are used. In
this paper, additional structural constraints are imposed on the CVQ
to reduce storage without sacrificing efficiency. The next section
describes the proposed CVQ and resultant multistage chains.

* This work was supported by the University of California MICRO grant
with matching support from Lucent Technologies, Raytheon Missile Sys-
tems, Tektronix Corporation and Xerox Corporation.

(Classified)

Vector

VQ

Next-stage
class

mapping: F0

Codevector +-
Residual

Classified

Class

VQ

Next-stage
class

+
+-x0

Index Index

c0 (= 0)

Input

c1
Class

I0

Next stage
class

ci+1

Next stage
class

y0
x1 xi

ci

1st
Residual

i th

Residual
(i+1) th

xi+1

yi

Ii

Stage 0 Stage i
Figure 1. The CS-MSVQ structure

mapping: Fi

+ Codevector

xi 1+ xi yi–=



3. LINEAR-TRANSLATE CLASSIFIED VQ
We first consider an isolated Linear-Translate Classified VQ

(LT-CVQ) system that forms the basic module in a LT-CS-MSVQ
chain. Let the number of classes in a LT-CVQ be N, and the number
of codevectors for each class be fixed at M. Then, M root vectors,

, along with N class matrices Aj, and N class
vectors vj, , need to be designed, so that the effec-
tive size-M codebook used for class j is given by the set

.
Figure 2 shows the LT-CVQ structure diagrammatically. Given

an input vector x, and associated class index c, the encoding rule is to
find the root vector that minimizes the distance
over all k. In other words, the codebooks for the individual classes are
obtained by linear transformations and translations of a common set
of root vectors. Figure 3 shows an example 2-class LT-CVQ. The
classes are distributed as shown on the left. However, a single root
codebook R is used to generate the codebooks for both the classes,
after a class-specific linear transformation and translation.

The rationale for the use of the LT-constraint is as follows. If the
individual class distributions are such that one can be approximately
transformed into the other with linear transformations and transla-
tions, then significant savings in storage may be achieved by storing a
single root codebook for all classes, with the individual codebooks
for each being generated by class specific linear transformations and
translations. The CSVQ approach [14] needs duplicate storage for
overlapped regions in class distributions. The universal codebook
based approach to CSVQ [15] on the other hand, while being very
flexible in terms of rate, can only exploit similarities in the over-
lapped regions of the class distributions. So if the overlapped regions
are small, due to substantial difference either in scale, orientation, or
centroids of the individual distributions, then universal codebooks
lose their storage efficiency. LT-CVQ, on the contrary, can effectively
exploit similarities both in the overlapped regions and non-over-
lapped regions, by rotation/scaling etc. of a common set of root code-
vectors. It is to be mentioned, that the LT-CVQ approach can be
readily combined with the universal codebook CSVQ approach [15],
to reap the same benefits of flexibility in rate. This may be done by
choosing the root codebook for each class as subsets of a single uni-
versal root codebook. In this paper however, we deal only with the
case where the full root codebook is used for all classes.

3.1 LT-CVQ Design Procedure
Let us assume that there is a separate training set

, for each of the N classes of vectors of dimen-
sion d. Also assume the number of root vectors to be designed to be
M. The LT-CVQ design objective then is to find M optimal root vec-
tors rk, , along with N optimal class matrices Aj,

and N optimal class vectors vj, , so as to minimize
the distortion for all the training sets. We present an iterative sequen-
tial update technique for the three codebooks, where, after each
encoding pass, only one of the three quantities are updated.

Given the root vectors, class matrices and class vectors at any
phase of the iterative process, all the N training sets are first encoded
by the nearest neighbor encoding rule. Based on the encoding results,
each training set is partitioned into M smaller sets , where
is the subset of that chooses rk as the root vector. The overall dis-
tortion for the training set is then given by:

(1)

The centroid condition can be separately written for each of the three
quantities , (while holding the other two fixed) by taking
partial derivatives of Eq. (1) w.r.t. one of , and equating to
zero. This leads to the following sequential update rules:

(2)

(3)

(4)

where the notation refers to the number of elements in a set .
We assume that the number of root vectors M is sufficiently large, and
the training sets do not form pathological distributions, so that the
matrix inversions in Eq. (2) and Eq. (3) are good.

The sequential update procedure starts from an initial set of
codebooks , and refines them one at a time in that order. A
single iteration therefore comprises three sub-iterations in succession,
the first for , the second for Aj, and the third for vj. Note that each
sub-iteration reduces the distortion in Eq. (1). The distortion is
checked after every full iteration for a standard stopping criterion.

The initial codebooks , are chosen as follows. For each
class j, Aj and vj are so chosen that the second order distributions for
the individual training sets each warp to the zero-centered average
second order distribution of all training sets taken together after the
inverse transformation (i.e. translation by –vj followed by linear
transformation with Aj

–1). In order to do so, the means mj and the
autocovariance matrices Kj for all classes are computed, along
with the autocovariance matrix K of all the combined training sets.
Then the following assignment for the initial Aj and vj are made:

(5)

where and are the diagonalizations of
positive definite matrices Kj and K respectively with unitary and

. Each training set is then translated by –vj and linear trans-
formed with non-singular Aj

–1, before combining them all into a com-
mon pool. Note that the second order distribution of the common pool
would be K since the individual distributions making up the common
pool each have the same second order distribution K. This common
pool is then used to design M root vectors rk by the GLA. These root
vectors, along with the class matrices and vectors given by Eq. (5)
form the initial guesses before the iterative sequential update design
commences.

3.2 LT-CVQ Encoding Complexity
The storage advantage of LT-CVQ over Unstructured Classified

VQ is not achieved without a price. For every input vector, the actual
codevectors in the class to which it belongs, can only be computed
with Md2 multiplications and Md2 additions, where the meaning of
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the quantities M and d are as in the previous section. For a practical
LT-CVQ reduced memory implementation, the encoder would typi-
cally store a few of the effective class codebooks in a cache at any
given time, while swapping and recomputing the codevectors for a
new class as and when required. Depending on the frequency of
cache updates required, determined by the cache size, the computa-
tional complexity involved may be significantly more than that
needed for Unstructured CVQ.

One approach to solving the complexity problem would be to
impose orthogonality constraints on the linear transform matrices by
suitable modifications of the design process. With orthogonal matri-
ces, a lower complexity weighted nearest-neighbor encoding rule can
be used on the inverse transformed input with untransformed root
codevectors, in lieu of the standard nearest neighbor encoding rule
with transformed root codevectors. We call this Orthogonal LT-CVQ
(OLT-CVQ), but do not investigate them further in this work.

3.3 LT-CS-MSVQ
LT-CS-MSVQ is simply a CS-MSVQ chain where the classified

VQ in each stage is a LT-CVQ. Figure 4 shows a module of a LT-CS-
MSVQ chain. For high resolution successive quantization, as the
number of stages in a CS-MSVQ structure increases, the initial distri-
bution of the input vectors tend to lose their character. While the
residuals remain confined within polytopic Voronoi regions around
codevectors of the previous encoding stage, their distributions
become more and more uniform within these regions. Further, the
distributions tend to differ substantially in scale so that the overlap
regions for the classes reduce substantially, leading to loss of storage
efficiency even for a MS-CSVQ designed using the universal code-
book approach [15]. Under these circumstances, choosing codevec-
tors as linear transformations and translations of a common set of root
vectors enable more effective sharing of codevectors, both in over-
lapped and non-overlapped regions, and the storage requirement is
substantially reduced for the same efficiency.

A stagewise joint design procedure similar to [14] may be used
to jointly design the mapping function for the current stage and the
LT-CVQ for the next stage, using an iterative alternate update rule.
For a given mapping function, the next stage CVQ is first updated
using the LT-CVQ design procedure in Section 3.1 operating on
merged residual clusters. Next, for a given next stage LT-CVQ, the
current mapping function is updated to map each small product resid-
ual cluster to the next stage class yielding the lowest overall distor-
tion. The initial mapping function is designed based on similarity of
distributions of product residual clusters.

Alternatively, a decoupled design procedure based on separate
clustering and design operations may be used if the rate and fan-out
required is too high for the joint design to remain practical. Given the
training the residual classes at a given stage, the LT-CVQ design pro-
cedure is followed by a clustering operation on the product residual
clusters based on similarily of their distributions, to generate the next-
stage mapping functions as well as the new training sets for the next
stage.

3.4 Storage Complexity
We consider the storage requirement in each stage of a LT-CS-

MSVQ chain, where all stages are assumed to be similar in parame-
ters (except possibly the first). Let the number of input classes in a

stage be N, the number of root vectors be M, and the vector dimen-
sion be d. Then, if f be the number of bits needed to store a floating
point number, the storage requirement in bits for the N class matrices
and vectors, is given by , while that for the M root vectors
is given by . The storage required in bits for storing MN N-ary
sumbols in the mapping function is given by . The
overall storage per stage in bits, , is then
given by adding the three:

(6)

Note that storage required by unstructured U-CS-MSVQ is given by:
(7)

Comparing Eq. (6) and Eq. (7) for the same set of parameters
, the following deduction can be made. Storage for LT-CS-

MSVQ is less than that for U-CS-MSVQ as long as:
(8)

It is to be noted that due to the additional structural constraints
on LT-CS-MSVQ, the same value of N as in U-CS-MSVQ for a given
value of M and d, yields a lower SNR for LT-CS-MSVQ. To compen-
sate for this difference, N has to be increased appropriately. It is still
hoped however, that the overall storage-efficiency trade-off will be
better in LT-CS-MSVQ than in U-CS-MSVQ.

4. IMPLEMENTATION AND RESULTS

4.1 Codebook Design for Gaussian Data
In order to test the U-CS-MSVQ and LT-CS-MSVQ structures,

we designed them for a training set of Gaussian data. Both the struc-
tures quantize 4-dimensional vectors in 9 stages, with 4 bits allocated
to each stage, i.e. , and . Figure 5 shows the SNR
progression with stages for U-CS-MSVQ, obtained for various values
of N (number of classes in each stage, except the first, which has a
single input class). In particular, values of N = 1, 2, 4, 8, and 16 are
used. Note the N = 1 corresponds to the standard multistage VQ.
Figure 6 shows the corresponding results for a LT-CS-MSVQ chain.

Comparing the figures, we see that while SNR for LT-CS-
MSVQ is lower than U-CS-MSVQ for the same N, its storage
requirement is much lower too. As an example, we compare the stor-
age/stage required by U-CS-MSVQ with N = 8 in the above situation,
with that required for LT-CS-MSVQ with N = 16. If we assume that 4
bytes (32 bits) are used to store a floating point number, then using
Eq. (7) with f = 32, N = 8, M = 16, d = 4, yields
bits/stage. On the other hand, using Eq. (6) with f = 32, N = 16, M =
16, d = 4, yields bits/stage. The latter however
yields lower distortion than the former. Figure 7 compares explicitly
for LT-CS-MSVQ and U-CS-MSVQ, the SNR obtained after 9 stages
plotted against the required storage/stage, for the same Gaussian data
as before. The graph clearly shows the superiority of LT-CS-MSVQ
over U-CS-MSVQ for a modrately large number of stages.
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4.2 VSPIHT Image Coding
The CS-MSVQ successive refinement methodology is applied

to a VSPIHT grayscale image coder. Magnitude classified U-CS-
MSVQ and LT-CS-MSVQ chains are designed for 4-dim wavelet
vectors in 2x2 blocks of each subband. All vectors are scaled uni-
formly before coding so that their maximum magnitude is a fixed at a
parameter R-1. The bit-allocation schedule, the codebook fan-out, and
the thresholds for classification, for a total of 9 classes are shown in
Table 1. The b|φ notation in the 3rd column of Table 1 refers to a bit-
allocation of b bits for a stage, with a fan-out of φ to the next stage.

The results obtained by 2 x 2 VSPIHT with U-CS-MSVQ, for
the Baboon image are shown in Table 2, compared against those
obtained by scalar SPIHT, and VSPIHT with tree-multistage VQ (TS-
MS-VQ) [6]-[8]. The corresponding results for the Barbara image

are shown in Table 3. Examination of the results reveal that for
VSPIHT coding there is no significant loss in efficiency by the use of
CS-MSVQ with uniform bit-allocation and smaller codebooks, over
TS-MSVQ with staggered bit-allocation and larger codebooks. In
fact, the results with CS-MSVQ are better than TS-MSVQ for the
Baboon image. The storage requirements are significantly reduced
with both CS-MSVQ structures. Also, between U-CS-MSVQ and LT-
CS-MSVQ, the latter requires significantly lower storage than the
former, for the same rate and fan-out. Furthermore, these structures
are very flexible, and a broad range of trade-offs between storage and
efficiency are possible.
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Table 1. Bit-allocation for 2 x 2 VSPIHT with CS-MSVQ

Class
Threshold Ri
R-1 = 8192

U-CS-MSVQ and LT-CS-MSVQ Bit-allocation
and Fan-out

0 4096 4|16, 6|32, 6|32, 5|32, 5|32, 5|32, 4|32, 4|32, 4|32
1 2048 5|32, 6|32, 6|32, 5|32, 5|32, 4|32, 4|32, 4|32
2 1024 5|32, 6|32, 5|32, 5|32, 4|32, 4|32, 4|32
3 512 5|32, 6|32, 5|32, 4|32, 4|32, 4|32
4 256 6|32, 6|32, 4|32, 4|32, 4|32
5 128 6|32, 5|32, 4|32, 4|32
6 64 5|32, 5|32, 4|32
7 32 5|32, 4|32
8 16 4|16
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Figure 6. SNR progression with stages for Gaussian data, obtained by a
LT-CS-MSVQ chain with 4-dim vectors, at rate 4 bits/stage, for varying
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Figure 7. SNR vs. storage/stage for Gaussian data, for LT-CS-MSVQ and
U-CS-MSVQ after 9 stages, with 4-dim vectors, at 4 bits/stage.

Table 2. PSNR (dB) vs. Bitrate (BPP) results for Baboon with 2x2 VSPIHT

BPP SPIHT
VSPIHT

(TS-MSVQ)
VSPIHT

(U-CS-MSVQ)
VSPIHT

(LT-CS-MSVQ)
0.2 22.69 22.77 22.80 22.79
0.4 24.65 24.88 24.91 24.88
0.6 26.50 26.57 26.67 26.64
0.8 27.84 27.94 28.04 28.00
1.0 29.15 29.30 29.33 29.30

Table 3. PSNR (dB) vs. Bitrate (BPP) results for Barbara with 2x2 VSPIHT

BPP SPIHT
VSPIHT

(TS-MSVQ)
VSPIHT

(U-CS-MSVQ)
VSPIHT

(LT-CS-MSVQ)
0.2 26.64 27.34 27.28 27.27
0.4 30.08 30.58 30.53 30.51
0.6 32.50 33.03 32.75 32.70
0.8 34.63 34.80 35.00 34.93
1.0 36.37 36.59 36.49 36.40
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