LINEAR-TRANSLATE CONSTRAINED STORAGE VQ FOR VSPIHT
WAVELET IMAGE COMPRESSION*

Debargha Mukherjee

Hewlet Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94304.
Email: debargha@hpl.hp.com

ABSTRACT

A new Constrained Sorage VQ (CSVQ) structure based on lin-
ear transforms and translates of a common root codebook is pro-
posed. The new VQ structure, named LT-CSVQ (Linear Translate
CSVQ), acts as a building block for multistage VQ implementations
(LT-CSMSVQ), and significantly reduces storage requirements from
that required in tree-multistage VQ implementations. LT-CSMSVQ is
most appropriate for medium rate multistage VQ implementations,
and is applied to the recently proposed vector enhancement of Said
and Pearlman’s Set Partitioning in Hierarchical Trees (SPIHT)
image coder, named VSPIHT.

1. INTRODUCTION

Vector extensions to popular scalar wavelet image coding
schemes like EZW [1] and SPIHT [2], have recently been proposed,
and named Vector EZW and Vector SPIHT (VSPIHT) respectively.
While lattice VQ based schemes [3]-[5] have fast algorithms, trained
VQ VSPIHT schemes [6]-[8] are superior in rate-distortion perfor-
mance. ThemainideainVSPIHT isto classify groups of coefficients
over concentric hyperspheres of decreasing radii, and progressively
quantize them using classified tree-multistage VQ (TS-M SV Q) struc-
tures. A key factor affecting the efficiency of vector based successive
approximation encoders, such as VSPIHT, is the effectiveness of suc-
cessive refinement V Q systems used for quantization. Multistage VQ
(MSVQ), dternatively known as Residual VQ (RVQ) [9], [10], is a
natural candidate for such progressive refinement VQ applications.
Unfortunately, the performance of M SV Qs degrade substantially with
the increase in the number of stages due to tree-entanglement, that
effectively reduces the codebook size from the allocated rate.
Although the suboptimalitiesintroduced by RV Q with multiple stages
may be alleviated by the use of joint codebook design procedures, in
conjunction with more complex multiple path search procedures [11],
[12], such schemes are less effective for embedded coding applica
tions, where the number of stagesto which a vector will be decoded is
not known at the time of encoding.

Considering the above factors, the only reasonable way to
enhance the efficiency of trained successive refinement VQs is to
increase the storage. MSVQ and Tree-Sructured VQ (TSVQ) [13],
[10], constitute two ends of the storage spectrum. While codebook
fan-out for MSVQ is unity at every stage, that for TSVQ increases
exponentially from stage to stage. For most applications including
V SPIHT, the codebook storage requirement as well as the training set
size requirement for TSVQ is untenable, while the performance of
MSVQ is unacceptable. Therefore, successive refinement VQ struc-
tures that achieve intermediate storage-efficiency trade-offs between
TSVQ and MSVQ, is of vital importance. The VSPIHT implementa-
tions presented in [6]-[8] use tree-multistage V Qs to achieve a certain
intermediate trade-off. Unfortunately, they require alarge storage, are
very rigid, and do not allow fine adjustments in storage and rate.

Chan and Gersho [14] developed a more sophisticated scheme
called Constrained-Storage VQ (CSVQ), that allows multiple sources
to be vector quantized with fewer codebooks by codebook sharing.
CSVQ can be readily combined with MSVQ to obtain Constrained
Storage Multistage VQs (CS-MSVQ) with arbitrary fan-outs. These
structures attempt reducing the suboptimalities of MSVQ by incre-

* This work was supported by the University of California MICRO grant
with matching support from Lucent Technologies, Raytheon Missile Sys-
tems, Tektronix Corporation and Xerox Corporation.

Sanjit K. Mitra

Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106.
Email: mitra@ece.ucsb.edu

p| Next-stage Next stage | Next-siage Next stage
class F class mdai$ F class
mapping: F o 3pping: c
Index| I Ci Class| Index|lj i+1
Class
©E9 (Classified) | Y0 & Classified | Vi
Classifi wmm
o | Ve [t e e T4
Input L !u (i+] th
Vector Residual Residual Residua
L | | |
Stege 0 Sagel

Figure 1. The CS-MSVQ structure

mental incorporation of memory into the stages. In order to improve
the storage-efficiency trade-off of CSVQ [14], Ramakrishnan et. at.
[15] recently proposed a generalized framework for CSVQ, using
shared codebooks chosen as subsets of a universal codebook. In this
paper, an alternative Linear Transformation (LT) constraint for CSVQ
is proposed, which for CSMSVQ chains (LT-CS-MSVQ) with a
large number of stages, achieve an even better storage-efficiency
trade-off. The eventual goal isto replace the TS-MSVQ structuresin
VSPIHT with these CS-MSVQ structures that are more flexible and
require less storage. Results are presented comparing LT-CS-MSVQ
with Chan and Gersho's Unstructured CS-MSVQ (referred to as U-
CS-MSVQ in this paper), while possible combination with the uni-
versal codebook approach [15] isleft as afuture extension.

2. THECS-MSVQ STRUCTURE

In a CS-MSVQ chain, all possible fanned out codebooks after
each stage, are merged in a controlled manner so that a desired effec-
tive fan-out is obtained. Since fan-out determines storage, which in
turn determines efficiency, an arbitrary trade-off between storage and
efficiency of successive refinement is achieved. The CSSMSVQ
structure is shown in Figurel. Each stage uses a classified VQ
(CVQ) system, where the class of a vector residual is determined by
the indices transmitted at the previous stages. Further, the mapping
function that yields the class of the residua at the next stage is
obtained from the training data itself, and is considered an integral
part of the stage codebooks. In the diagram, xq represents an input
vector. If the VQ itself is not classified, then the class index cq of X is
taken as 0. For any stage i, theinput consists of theith residual x; and
the corresponding class index c;. The classified VQ associated with
the stage encodes x; to generate codevector y; and index I; while the
next class mapping function F; generates class index ¢4 from ¢; and
l;. The residual x;,, = X;—Y; is passed on to the next stage along
with classindex Cj1.

The design effort in CS-MSVQ consists of designing the stage
CVQs as well as the mapping functions. While atruly optimal design
over al stages must account for all dependencies between the CVQs
and the mapping functions, in practice such schemes are hard to
design under reasonable complexity constraints. The design proce-
dures proposed in [14] are of a stage-wise greedy nature where the
objective is to do the best encoding at each stage. This methodology
also fits well with the objectives of embedded coding. Depending on
the nature of the CVQs, several types of CS-MSV Qs can be defined.
The standard CS-MSVQ structure [14] isreferred to as Unstructured
CSMSVQ (U-CS-MSVQ), because unstructured CVQs are used. In
this paper, additional structural constraints are imposed on the CVQ
to reduce storage without sacrificing efficiency. The next section
describes the proposed CV Q and resultant multistage chains.

> |
-

encoding index

Class Ve

Vectors
S J: A,
class index Class c

Matrices

reproduction

AC y vector

X Root "l

input vector Vectors

LT-CVQ
Figure 2. A Linear Trandate-Classified VQ Structure

VRIorG | AR+v,
OH\ Root Codebook ~ ——1 20—
l /
2 «d®
VQforCl. AR+ v,

Figure 3. A pictoria description of a 2-classLT-CVQ

3. LINEAR-TRANSLATE CLASSIFIED VQ

We first consider an isolated Linear-Trandate Classified VQ
(LT-CVQ) system that forms the basic module in a LT-CS-MSVQ
chain. Let the number of classesin aLT-CVQ be N, and the number
of codevectors for each class be fixed at M. Then, M root vectors,
Mo k=01 .. M-1,aongwith N class matrices A;, and N class
vectorsyj, j = 0,1, ..., N—1, need to be designed, so that the effec-
tive sizeM codebook used for class j is given by the set
{Ajrk+v]-|k= 0,1 .., M-1}.

Figure 2 shows the LT-CV Q structure diagrammatically. Given
an input vector x, and associated classindex c, the encoding rule isté)
find the root vector rthat minimizes the distance |x—ACrk—vC||
over all k. In other words, the codebooks for the individual classes are
obtained by linear transformations and translations of a common set
of root vectors. Figure3 shows an example 2-class LT-CVQ. The
classes are distributed as shown on the left. However, a single root
codebook R is used to generate the codebooks for both the classes,
after a class-specific linear transformation and translation.

Therationale for the use of the LT-constraint is as follows. If the
individual class distributions are such that one can be approximately
transformed into the other with linear transformations and transla-
tions, then significant savingsin storage may be achieved by storing a
single root codebook for all classes, with the individual codebooks
for each being generated by class specific linear transformations and
translations. The CSVQ approach [14] needs duplicate storage for
overlapped regions in class distributions. The universal codebook
based approach to CSVQ [15] on the other hand, while being very
flexible in terms of rate, can only exploit similarities in the over-
lapped regions of the class distributions. So if the overlapped regions
are small, due to substantial difference either in scale, orientation, or
centroids of the individua distributions, then universal codebooks
lose their storage efficiency. LT-CVQ, on the contrary, can effectively
exploit similarities both in the overlapped regions and non-over-
lapped regions, by rotation/scaling etc. of acommon set of root code-
vectors. It is to be mentioned, that the LT-CVQ approach can be
readily combined with the universal codebook CSVQ approach [15],
to reap the same benefits of flexibility in rate. This may be done by
choosing the root codebook for each class as subsets of a single uni-
versal root codebook. In this paper however, we dea only with the
case where the full root codebook is used for all classes.

3.1 LT-CVQ Design Procedure

Let us assume that there is a separate training set
%, J = 0,1, ...,N—1, for each of the N classes of vectors of dimen-
sion d. Also assume the number of root vectors to be designed to be
M. The LT-CVQ design objective then is to find M optimal root vec-
torsry, k = 0,1, ..., M—1, along with N optimal class matrices Al

and N optimal classvectorsvj, j =0,1,...,N—1, soasto minimize
the distortion for al the training sets. We present an iterative sequen-
tial update technique for the three codebooks, where, after each
encoding pass, only one of the three quantities r, Aj, vj are updated.

Given the root vectors, class matrices and class vectors at any
phase of the iterative process, all the N training sets are first encoded
by the nearest neighbor encoding rule. Based on the encoding results,
each training set y; is partitioned into M smaller sets ., , where y;,
is the subset of ; “that chooses r| as the root vector. The overall dis-
tortion for thetrailning set isthen given by:

N-1M-1 ,
D= Z Z [Z ||x—Ajrk—vj||])
j:Ok:O Xe Xjk

The centroid condition can be separately written for each of the three
quantities r,, A, v, (while holding the other two fixed) by taking

partial derivatives bf Eq. (1) w.rt. oneof ry, A, v., and equating to
zero. This leads to the following sequential updéte tules.
N-1 No1
re = Z:|xjk|AjTAj ZA]T Z (X=V)|k=0..M-1 (2)
j=0 j=0 XE Xjk

-1

M-1
T

Z|xjk|rkrk j=o0..N-1 (3)

k=0

M-1
A = Z Z (x—v]-)rl
K

= 0X € Xy
M-1
_ 1 _A P = _
v _|XI|Z[Z (X A]rk)] i=0..N-1 (4)
k=0 X € Xk

where the |x| notation refers to the number of elementsin a set .
We assume that the number of root vectors M issufficiently large, and
the training sets do not form pathological distributions, so that the
matrix inversionsin Eq. (2) and Eq. (3) are good.

The sequential update procedure starts from an initial set of
codebooks 1, A;, v;, and refines them one at a time in that order. A
singleiteration theréfore comprises three sub-iterations in succession,
the first for r , the second for A‘ and the third for v;. Note that each
sub-iteration reduces the distortion in Eq. (1). The distortion is
checked after every full iteration for a standard stopping criterion.

Theinitial codebooks Ne A, V;, are chosen as follows. For each
classj, A and Vvj are so chosen tﬂwat lthe second order distributions for
the individual training sets each warp to the zero-centered average
second order distribution of all training sets taken together after the
inverse transformation (i.e. translation by —v; followed by linear
transformation with A‘-‘). In order to do so, the means m; and the
autocovariance matrices K; for all classes y; are computed, along
with the autocovariance matrix K of all the combined training sets.
Then the following assignment for the initial Aj and v; are made:

A= XiA]-l/zA 12T 5)
where K; = XA X.| and K = XAX' are the diagonalizations of
positive definite rhatrices Kj and K respectively with unitary X, and
X. Each training set y; is then translated by —v; and linear trans-
formed with non-si ngulér A]-‘l, before combining them all into acom-
mon pool. Note that the second order distribution of the common pool
would be K since the individual distributions making up the common
pool each have the same second order distribution K. This common
pool is then used to design M root vectors r by the GLA. These root
vectors, along with the class matrices and vectors given by Eg. (5)
form the initial guesses before the iterative sequential update design
commences.

3.2 LT-CVQ Encoding Complexity

The storage advantage of LT-CVQ over Unstructured Classified
VQ is not achieved without a price. For every input vector, the actual
codevectors in the class to which it belongs, can only be computed
with Md? multiplications and Md? additions, where the meaning of

v; = my,

l. g Fi(:) >
1 GCi
Class VC| / i+1
< Vectors ‘encoding
G AQ index
classindex Class
Matrices
A - X
X; | Root r i ~,_Aq _ i+1
input vector Vectors h
LT-CVQ

Figure 4. A stage of aLT-CSMSVQ chain

the quantities M and d are as in the previous section. For a practical
LT-CVQ reduced memory implementation, the encoder would typi-
caly store afew of the effective class codebooks in a cache at any
given time, while swapping and recomputing the codevectors for a
new class as and when required. Depending on the frequency of
cache updates required, determined by the cache size, the computa-
tional complexity involved may be significantly more than that
needed for Unstructured CVQ.

One approach to solving the complexity problem would be to
impose orthogonality constraints on the linear transform matrices by
suitable modifications of the design process. With orthogonal matri-
ces, alower complexity weighted nearest-neighbor encoding rule can
be used on the inverse transformed input with untransformed root
codevectors, in lieu of the standard nearest neighbor encoding rule
with transformed root codevectors. We call this Orthogonal LT-CVQ
(OLT-CVQ), but do not investigate them further in this work.

3.3 LT-CSMSVQ

LT-CS-MSVQ issimply aCS-MSV Q chain where the classified
VQineach stageisaLT-CVQ. Figure 4 shows a module of aLT-CS-
MSVQ chain. For high resolution successive quantization, as the
number of stagesin a CS-MSV Q structure increases, the initial distri-
bution of the input vectors tend to lose their character. While the
residuals remain confined within polytopic Voronoi regions around
codevectors of the previous encoding stage, their distributions
become more and more uniform within these regions. Further, the
distributions tend to differ substantially in scale so that the overlap
regions for the classes reduce substantially, leading to loss of storage
efficiency even for a MS-CSVQ designed using the universal code-
book approach [15]. Under these circumstances, choosing codevec-
torsaslinear transformations and translations of acommon set of root
vectors enable more effective sharing of codevectors, both in over-
lapped and non-overlapped regions, and the storage requirement is
substantially reduced for the same efficiency.

A stagewise joint design procedure similar to [14] may be used
to jointly design the mapping function for the current stage and the
LT-CVQ for the next stage, using an iterative aternate update rule.
For a given mapping function, the next stage CVQ is first updated
using the LT-CVQ design procedure in Section 3.1 operating on
merged residual clusters. Next, for a given next stage LT-CVQ, the
current mapping function is updated to map each small product resid-
ual cluster to the next stage class yielding the lowest overall distor-
tion. The initial mapping function is designed based on similarity of
distributions of product residual clusters.

Alternatively, a decoupled design procedure based on separate
clustering and design operations may be used if the rate and fan-out
reguired istoo high for the joint design to remain practical. Given the
training the residual classes at a given stage, the LT-CVQ design pro-
cedure is followed by a clustering operation on the product residual
clusters based on similarily of their distributions, to generate the next-
stage mapping functions as well as the new training sets for the next
stage.

3.4 Sorage Complexity

We consider the storage requirement in each stage of a LT-CS-
MSVQ chain, where all stages are assumed to be similar in parame-
ters (except possibly the first). Let the number of input classes in a

U-CS-MSVQ SNR plots for Gaussian source with 4 bits/stage
T T T T T T

1 class/stage

2 classes/stage
4 classes/stage
8 classes/stage 'S
16 classes/stage

SNR (dB)

I I I I I I I I
1 2 3 4 5 6 7 8 9
Number of stages

Figure 5. SNR progression with stages for Gaussian data, obtained by a U-
CS-MSVQ chain with 4-dim vectors, at rate 4 bits/stage, for varying
number of input classes in each stage.

stage be N, the number of root vectors be M, and the vector dimen-
sion be d. Then, if f be the number of bits needed to store a floating
point number, the storage reqai rement in bits for the N class matrices
and vectors, isgiven by fN(d< +d) , whilethat for the M root vectors
is given by fMd . The storage required in bits for storing MN N-ary
sumbols in the mapping function is given by MN[log,N7]. The
overall storage per stage in bits, : (N, M, d), is then
given by adding the three: S CSMSVQ

S r-csmsvo(N M, d) = fN(d2 +d) +fMd+MN[log,NT (6)

Note that storage required by unstructured U-CS-MSV Q is given by:
Su-csmsvo(N- M, d) = fNMd + MN[log,N] (7)

Comparing Eq. (6) and Eq. (7) for the same set of parameters
(N, M, d), the following deduction can be made. Storage for LT-CS-
MSVQ islessthan that for U-CS-MSVQ aslong as:
N>M/(M-d-1) (8)
It is to be noted that due to the additional structural constraints
on LT-CS-MSVQ, the same value of N asin U-CS-MSVQ for agiven
value of M and d, yields alower SNR for LT-CS-MSV Q. To compen-
sate for this difference, N has to be increased appropriately. It is still
hoped however, that the overall storage-efficiency trade-off will be
better in LT-CS-MSVQ than in U-CS-MSVQ.

4. IMPLEMENTATION AND RESULTS

4.1 Codebook Design for Gaussian Data

In order to test the U-CS-MSVQ and LT-CS-MSVQ structures,
we designed them for atraining set of Gaussian data. Both the struc-
tures quantize 4-dimensional vectorsin 9 stages, with 4 bits allocated
to each stage, i.e. d = 4, and M = 16. Figure 5 shows the SNR
progression with stages for U-CS-M SV Q, obtained for various values
of N (number of classes in each stage, except the first, which has a
single input class). In particular, valuesof N =1, 2, 4, 8, and 16 are
used. Note the N = 1 corresponds to the standard multistage V Q.
Figure 6 shows the corresponding results for aLT-CS-MSVQ chain.

Comparing the figures, we see that while SNR for LT-CS-
MSVQ is lower than U-CS-MSVQ for the same N, its storage
requirement is much lower too. As an example, we compare the stor-
age/stage required by U-CS-MSVQ with N = 8 in the above situation,
with that required for LT-CS-MSVQ with N = 16. If we assume that 4
bytes (32 bits) are used to store a floating point number, then using
Eq. (7) withf =32, N=8,M=16,d =4, yields S, _csysvo = 16768
bitg/stage. On the other hand, using Eq. (6) with f = 32, l&= 16, M =
16,d =4, yields § 1.csmsvg = 13312 bits/stage. The latter however
yields lower distortion than the former. Figure 7 compares explicitly
for LT-CS-MSVQ and U-CS-MSV Q, the SNR obtained after 9 stages
plotted against the required storage/stage, for the same Gaussian data
as before. The graph clearly shows the superiority of LT-CS-MSVQ
over U-CS- M SVQ for amodrately large number of stages.

LT-CS-MSVQ SNR plots for Gaussian source with 4 bits/stage

40 T T T T T T T
—e 1 class/stage R
—— 2 classes/stage
/| —Aa— 4 classes/stage 1
—— 8 classes/stage
—e— 16 classes/stage
301 1
251 4
@
=
& 20 1
z
2]
151 4
10 1
sk 4
I | I I I I I I
1 2 3 4 5 6 7 8 9

Number of stages

Figure 6. SNR progression with stages for Gaussian data, obtained by a

LT-CS-MSVQ chain with 4-dim vectors, at rate 4 bits/stage, for varying
number of input classesin each stage.

SNR vs. Storage plots for Gaussian source with 4 bits/stage, for LT-CS-MSVQ and U-CS-MSVQ
T T T T

41 T

T
—e— LT-CS-MSVQ
— U-CS-MSvVQ

39

@ @
N @
T T

SNR after 9 stages (dB)

w
-3
T

35

I I I
25 3 3.5

x 10
Figure 7. SNR vs. storage/stage for Gaussian data, for LT-CS-MSVQ and
U-CS-MSVQ after 9 stages, with 4-dim vectors, at 4 bits/stage.

33 1 1 1
o] 0.5 1 15 2
Storage per Stage (Bits)

4.2 VSPIHT Image Coding

The CS-MSVQ successive refinement methodology is applied
to a VSPIHT grayscale image coder. Magnitude classified U-CS-
MSVQ and LT-CS-MSVQ chains are designed for 4-dim wavelet
vectors in 2x2 blocks of each subband. All vectors are scaled uni-
formly before coding so that their maximum magnitude is afixed at a
parameter R 4. The bit-allocation schedule, the codebook fan-out, and
the thresholds for classification, for atotal of 9 classes are shown in
Table 1. The b|¢ notation in the 3rd column of Table 1 refersto a bit-
allocation of b bits for a stage, with afan-out of ¢ to the next stage.

Table 1. Bit-allocation for 2 x 2 VSPIHT with CSMSVQ

Threshold R; | U-CS-MSVQ and LT-CS-MSVQ Bit-allocation
Class | Rq=8192 and Fan-out
0 4096 4]16, 6[32, 6[32, 5[32, 5[32, 532, 4[32, 432, 4]32
1 2048 5[32, 6[32, 6]32, 5[32, 5[32, 432, 4]32, 4[32
2 1024 5[32, 6[32, 5[32, 532, 4[32, 4132, 4]32
3 512 5[32, 6[32, 5[32, 432, 4]32, 432
4 256 6[32, 6[32, 4]32, 432, 4]32
5 128 6[32, 5[32, 432, 4]32
6 64 5[32, 5[32, 4132
7 32 532, 4]32
8 16 416

The results obtained by 2 x 2 VSPIHT with U-CS-MSVQ, for
the Baboon image are shown in Table2, compared against those
obtained by scalar SPIHT, and VSPIHT with tree-multistage VQ (TS
MS-VQ) [6]-[8]. The corresponding results for the Barbara image

are shown in Table3. Examination of the results reveal that for
VSPIHT coding thereis no significant lossin efficiency by the use of
CS-MSVQ with uniform bit-allocation and smaller codebooks, over
TSMSVQ with staggered bit-allocation and larger codebooks. In
fact, the results with CS-MSVQ are better than TSMSVQ for the
Baboon image. The storage requirements are significantly reduced
with both CS-M SV Q structures. Also, between U-CS-MSVQ and LT-
CS-MSVQ, the latter requires significantly lower storage than the
former, for the same rate and fan-out. Furthermore, these structures
are very flexible, and abroad range of trade-offs between storage and
efficiency are possible.

Table 2. PSNR (dB) vs. Bitrate (BPP) results for Baboon with 2x2 VSPIHT

VSPIHT VSPIHT VSPIHT
BPP | SPIHT | (TSMSVQ) | (U-CSMSVQ) | (LT-CSMSVQ)
0.2 22.69 22.77 22.80 2279
04 24.65 24.83 24.91 24.83
0.6 26.50 26.57 26.67 26.64
0.8 2784 27.94 28.04 28.00
10 29.15 29.30 29.33 29.30
Table 3. PSNR (dB) vs. Bitrate (BPP) results for Barbarawith 2x2 VSPIHT
VSPIHT VSPIHT VSPIHT
BPP | SPIHT | (TSMSVQ) | (U-CS-MSVQ) | (LT-CSMSVQ)
0.2 26.64 27.34 27.28 2727
04 30.08 30.58 30.53 3051
0.6 32.50 33.03 32.75 32.70
0.8 34.63 34.80 35.00 3493
10 36.37 36.59 36.49 36.40

5. REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” |EEE Trans. Signal Processing, vol. 41, no. 12, pp. 3445-62,
Dec. 1993.

[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchica trees,” |IEEE Trans. Circuits and
Systems for Video Technology, vol. 6, no. 3, pp. 243-50, June 1996.

[3] E. A. B. Da Silva, D. G Sampson, M. Ghanbari, “A successive
approximation vector quantizer for wavelet transform image coding,” |IEEE
Trans. Image Processing, vol. 5, no. 2, pp. 299-310, Feb. 1996.

[4] J Knipe, X. Li, and B. Han, “An improved lattice vector quantization
scheme for wavelet compression,” |EEE Trans. Signal Processing, vol.
46, no. 1, pp. 239-43, Jan 1998.

[5] D.Mukherjeeand S. K. Mitra, “Vector set partitioning with successive
refinement Voronoi lattice VQ for embedded wavelet image coding,” Proc.
|EEE Int. Conf. on Image processing, Chicago, Illinais, vol. 1, pp. 107-11,
Oct 1998.

[6] D.Mukherjeeand S. K. Mitra, “Vector set partitioning with classified
successive refinement VQ for embedded wavel et image and video coding,”
Proc. |IEEE Int. Conf. on Acoustics, Speech, and Sgnal Processing, Seattle,
Washington, vol. 5, pp. 2809-12, May 1998.

[7] D.Mukherjeeand S. K. Mitra, “Arithmetic Coded Vector SPIHT with
classified tree-multistage VQ for color image coding,” |EEE Workshop on
Multimedia Signal Processing, Los Angeles, Cdifornia, Dec 1998.

[8] D. Mukherjee, Vector Set Partitioning and Successive Refinement VQ
for Wavelet Image and Video Compression, Ph.D. Thesis, University of Ca-
ifornia, Santa Barbara, Aug 1999.

[9] C.F Barnes, S. A. Rizvi, N. M. Nasrabadi, “Advancesin residua vec-
tor quantization: A review,” |EEE Trans. Image Processing, vol. 5, no. 2,
Feb 1996.

[10] A. Gersho and R. M. Gray, Vector Quantization and Signal Com-
pression. Boston, MA: Kluwer, 1992.

[11] C. F. Barnes, R. L. Frost, “Vector quantizers with direct sum code-
books,” |[EEE Trans. on Information Theory, vol. 39, no. 2, pp. 565-80,
March 1993.

[12] W.-Y Chan, S. Gupta, A. Gersho, “Enhanced multistage vector quanti-
zation by joint codebook design,” |EEE Trans. Communications, vol. 40,
no. 11, pp. 1693-97, Nov. 1992.

[13] A.Buzo, A. H. Gray, R. M. Gray, J. D. Markel, “ Speech coding based
upon vector quantization,” |IEEE Trans. Acoustics, Speech and Sgnal Pro-
cessing, vol. ASSP-28, pp. 562-74, Oct. 1980.

[14] W.-Y Chan, A. Gersho, “Constrai ned-storage quantization of multiple
vector sources by codebook sharing,” |EEE Trans. Communications, vol.
39, no. 1, pp. 11-13, January 1991.

[15] S. Ramakrishnan, K. Rose, A. Gersho, “Constrained-storage vector
guantization with a universal codebook,” |EEE Trans. Image Processing,
vol. 7, no. 6, pp. 785-93, June 1998.

	LINEAR-TRANSLATE CONSTRAINED STORAGE VQ FOR VSPIHT WAVELET IMAGE COMPRESSION*
	1. INTRODUCTION
	2. THE CS-MSVQ STRUCTURE
	3. LINEAR-TRANSLATE CLASSIFIED VQ
	3.1 LT-CVQ Design Procedure
	3.2 LT-CVQ Encoding Complexity
	3.3 LT-CS-MSVQ
	3.4 Storage Complexity

	4. IMPLEMENTATION AND RESULTS
	4.1 Codebook Design for Gaussian Data
	4.2 VSPIHT Image Coding

	5. REFERENCES

