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ABSTRACT

In this article, a new architecture for speech recognition is in-
troduced. As with many existing speech systems, this new ap-
proach involves multi-pass processing. In the present case, how-
ever, second-pass models are constructed on-line for each active
hypothesis. Models for each hypothesized segment of the current
utterance are constructed from linear combinations of “data clus-
ter models” that have been trained on low-variability clusters of the
training corpus. The data cluster weights are determined using an
“eigenvoice” mechanism that is operative on low-complexity, low-
definition models. Once determined, the same weights are used
to construct high-complexity, high-definition second-pass mod-
els generated over thesame data clusters. Results from a simple
recognition task are reported to demonstrate the interesting prop-
erties of the new architecture. The limitations, trade-offs and some
possible extensions of the proposed approach are discussed.

1. INTRODUCTION

State-of-the-art speaker-independent ASR systems perform con-
siderably worse than corresponding speaker-dependent systems.
The natural solution to this difficulty is adaptation: adjusting either
models or features in a manner appropriate to the current speaker
and environment. Unfortunately, while humans seem to be able
to adapt to a new speech environment in just a few syllables [1],
commercial ASR adaptation requires considerably more adapta-
tion data.

There are two adaptation mechanisms that have received con-
siderable attention in the last decade. The first, Maximum A Poste-
riori (MAP) adaptation perturbs the model parameters in the direc-
tion of the observed speech [2]. The second, Maximum Likelihood
Linear Regression (MLLR) adaptation estimates a linear transfor-
mation that results in a maximum likelihood score using the given
models [3, 4].

Two essential difficulties plague acoustic model adaptation.
First, the appropriate transformation or perturbation has been
shown to depend highly on the phonetic class of the observations.
As a result, it is difficult to use data from a given phonetic class to
adapt data from a significantly different phonetic class [5]. Sec-
ond, both of these conventional techniques require a relatively
large amount of data on the basis of the usual relationship between
training data and parametric complexity. For commercial speech
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applications, however, we would wish to have reliable adaptation
on the basis of minimal data. In fact, it would be highly desirable
to have an adaptation process that provides significant gains on the
very first word spoken by any given speaker.

Recently, Kuhn et al. introduced “eigenvoices,” a mechanism
that relies on considerably fewer parameters than either MLLR or
MAP [6]. In consequence, it has been shown to provide successful
adaptation on very little data indeed. A similar adaptation mecha-
nism was recently proposed in [7].

There are three admitted weaknesses with the eigenvoices strat-
egy. First, the mechanism seems to work best in a “diffuse” model
space. Indeed, the observation probability density functions (pdfs)
of the eigenvoice examples in the literature are Gaussians rather
than the common, and typically much more effective in terms of
recognition power, mixture-of-Gaussians. Second, it is not at all
clear that a given speaker cannot have entirely different eigenvoice
coefficients in different phonetic contexts. That is, it is possible
that the phonetic dependence so critical to traditional adaptation
mechanisms may also be active in the present case. In keeping
with this consideration, recent work has demonstrated gains by
maintaining speaker clusters at a subword-level [8]. Finally, eigen-
voice gains have been most noticeable in the context of speakers
for whom training data is available. This is in direct constrast to
the more conventional adaptation mechanisms that are specially
effective for speakers for whom some speaking characteristics do
not exist in the training corpus [5]. Further to this observation,
while the speaker-specific clustering inherent in the eigenvoice lit-
erature is natural and convenient, we observe that the intra-speaker
variability of speech may well be of the same magnitude as the
inter-speaker variability [9].

The present article attempts to address each of these issues. In-
deed, the three significant departures of the present work from that
due to Kuhn et al. are:

� Eigenvoice coefficients estimated from diffuse-model eigen-
voices are exported to a complex model context for rescoring.

� Eigenvoices are constructed independently for phonetic
classes (i.e., adaptation units).

� Data clustering rather than speaker identity is used as the ba-
sis for eigenvoice construction.

In the next section a new architecture for speech recognition
that we will callHypothesis-Driven Adaptation (HyDrA) will be
introduced. Subsequent sections will report results of HyDrA pro-
cessing on a simple recognition task and discuss their implications.



2. HYDRA ARCHITECTURE

The eigenvoice concept depends on the observation that any
amount of speech can be considered to reside in the space of
“super-vectors” consisting of HMM parameters [6]. While it is
possible to make use of any and all such parameters, the present
work takes only the means of the Gaussians by which the HMM
observation pdfs are parametrized. If HMM parameters are re-
estimated over as little as a single utterance, that utterance is im-
plicitly represented in the appropriate phonetic subspace. In the
development that follows, this re-estimation procedure appears for
both training sub-corpora and individual utterances. As a result,
single utterances can be related directly to training sub-corpora.

In Figure 1, the proposed architecture for speech processing is
illustrated. Data clusters for a given adaptation unit, represented
by training sub-corpora and constructed to reduce the variability
within each cluster, are labelledDC1 DC2 DC3 � � �DCL. These
clusters are identical above and below the dotted line which delim-
its the domain of diffuse models from that of complex models. The
training of the unit-data-cluster modelsm` (the eigenvoices) and
b` is accomplished using a re-estimation mechanism that main-
tains parameter-wise alignment across all of the these models. In
effect, the segmentation that is active for all re-estimations is due
to the same modelsm0 orb0 in the diffuse and complex domains,
respectively.
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Fig. 1. Hypothesis-Driven Adaptation

For each utterance presented to the recognizer, a first-pass
recognition reduces the search space down to a N-best list or word
lattice. For each adaptation unitk represented in this rescoring
domain, adaptation coefficientsck are estimated. First, a super-
vector is constructed by re-estimating the diffuse model parame-
ters with the utterance at hand. A constrained projectionm̂k of

this supervector onto the space of appropriate eigenvoicesm`;k is
now obtained. In effect,

m̂k = [m1;k m2;k � � �mL;k] ck

The resulting adaptation coefficients are then exported into the
complex model space, and the adapted complex modelsbk are
constructed using the corresponding linear combination of the
cluster-re-estimated complex models. Rescoring is now performed
on the N-best list or word lattice using the constructed complex
models.

The cluster-match mechanism at work in Figure 1 is neither a
simple projection nor the MLED from [6], which is essentially
a masked transformed projection. Rather, the adaptation coeffi-
cients are the solution to the “doubly-convex” optimization prob-
lem. That is, we minimize the quadratic (convex) function

J(c) = k[m1m2 � � �mL] c�mk2

under the convex-set constraints

a)
PL

`=1
c` = 1

b) c` > 0; 1 � ` � L

In this manner, we are certain to obtain a solution that lies “inside”
the simplex defined by the data cluster models.

A final mechanism is necessary to ensure that the export of the
adaptation coefficients from the diffuse model space to that of the
complex models is meaningful. This is represented by a “fall-
back” strategy for those utterance-choice pairs in which the ob-
servation cannot be represented accurately by the data clusters. A
variability-capture coefficientf is introduced, and used to provide
an interpolation between the base complex models (b0) and those
suggested by the adaptation coefficients, as illustrated in Figure 1.
For the present, we will use the simple relation

f = 1�min

�
J(c)

kmk2
; 1

�
:

When the variability capture is high, the objective functionJ is
small relative to the norm ofm and f is consequently close to
unity. On the other hand, if the cluster models cannot represent the
given adaptation unit, the objective function can be quite large, in
which event the model adaptation falls back to the base models.

3. EXPERIMENTATION

HyDrA processing is now illustrated in the context of a small-
vocabulary pseudo-isolated word task. A corpus consisting of
around 15k noisy wireless “telephone number” utterances spoken
in Quebec French were automatically segmented to create roughly
13k utterances of each of the ten French digits:UN, DEUX,
TROIS, QUATRE, CINQ, SIX, SEPT, HUIT, NEUF & ZERO. Of
these, one thousand of each digit were randomly selected and set
aside as test sets, and the rest were used for training. Note that
though the digits were spoken “continuously,” the automatic seg-
mentation results in artificially isolated words.

A simple mono-Gaussian-pdf CDHMM (i.e., the “diffuse”
model) was created and trained independently with each training
utterance. Word-specific models having between nine and twelve
states were used to represent each digit. Feature vectors consisted
of five MFCCs, their “deltas,” delta-energy and delta-delta-energy.



Note that the use of a word as an adaptation unit was for concept
exploration only. This issue will be discussed in a subsequent sec-
tion.

The supervectors obtained by the re-estimation of the training
utterances were clustered using the standard k-means algorithm.
The training set partitions implicitly resulting from this clustering
were then used to construct eigenvoices for each word for both the
diffuse model and a complex model. The feature vectors for the
complex models are similar in construction to those of the diffuse
model but with nine MFCCs rather than five, for a feature vec-
tor size of twenty. Mixture pdfs were made up of eight Gaussians
each, and each (word-dependent) phone had a single tied full co-
variance matrix.

While the standard HyDrA processing would involve an N-best
rescoring, this aspect of the recognition process has been relaxed
within the context of this artificially constrained task.

3.1. Protocol

Five different processings were applied to the104 test utterances:

� HyDrA processing: “A18”: L = 18; “A8”: L = 8

� Benchmark HMM processing:

– “B8” b0 (8 Gaussians/pdf)

– “B32” 16 Gaussians/pdf and gender clusters

– “B144” pdf fusion ofb1 b2 � � �b18 (144 G/pdf)

The reason that three benchmarks are considered is that it is
difficult to know of what a “fair” benchmark model consists. On
the one hand,B8 represents the case in which the conventional
processing shares the same parametric complexity as the “active”
HyDrA model. On the other hand, the parametric complexity of
B144 is the same as thetotal parametric complexity of the HyDrA
processing. Obtained by the pdf-level fusion of the HyDrA clus-
ter models, this benchmark makes each of the HyDrA parameters
active in recognition. The remaining benchmark is another inter-
esting case: an intermediate parametric complexity with a more
traditional clustering strategy.

3.2. Results

Recognition results for the five processings under consideration
are summarized in Table 1, below. The almost 50% ERR for the
digit SEPT bears mention. Other results of interest include the
surprising differences between the performance ofB8 andB32 for
DEUX andSIX.

Table 1. Recognition summary

digit A18 A8 B8 B32 B144

1 96.3 96.3 94.9 95.1 96.0
2 95.8 95.9 94.3 93.8 95.2
3 98.6 98.5 98.5 99.2 99.0
4 95.5 96.0 95.4 96.1 96.4
5 97.3 97.2 96.7 97.2 97.7
6 95.4 95.3 91.7 95.1 96.1
7 95.2 95.1 91.3 91.8 91.7
8 96.9 96.6 96.6 95.4 95.9
9 96.8 96.3 96.4 97.1 97.0
0 99.1 98.9 98.9 98.9 99.2

all 96.7 96.6 95.5 96.0 96.4

3.3. Further analysis

In [6], an eigen-decomposition of speaker dependent models
demonstrates that no fewer than fourteen dimensions (i.e., fifteen
clusters) are required to capture half the variability in the spoken
English alphabet. The same paper reports that the most signif-
icant dimension (eigenvoice) representing speaker sex is shown
to capture less than 20% of all variability. Unfortunately, the re-
ported observation is biased by the fact that the correlation matrix
includes the “mean” supervector. Moreover, the variability over
the speakers considered in [6] is also limited. Thus, the actual
variation capture of the dominant dimension over all speakers is
typically less than 10% for short words, and even less for longer
words.

Variation dimensionality can similarly be examined by the con-
struction of matrices whose columns are the super-vectors used in
the clustering procedure used above. The typical matrix has be-
tween 108 and 144 rows (i.e., the number of states� the number
of features for the diffuse models) and around 12k columns (i.e.,
the number of utterances).

The normalized cumulative squared singular values of the
mean-removed matrices of this type were obtained to indicate the
degree of variability present in a given number of dimensions. Fig-
ure 2 displays these curves for each of the digits. from this figure,
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Fig. 2. Dimensional variation capture for French digits

we see, for example, that there is considerably greater variability in
the two-syllableZERO than in the one-syllableSEPT. Moreover,
to capture 50% of the variability of the average digit, at least eight
dimensions would be necessary. Note that this is less than reported
in [6] due to the much smaller adaptation unit.

3.4. Discussion

The performance of HyDrA is clearly sensitive to the relative sizes
of its components. For example, if the number of clusters is too
large, the estimation difficulties inherent in traditional adaptation
methods will arise. On the other hand, too few clusters will result
in insufficient variability capture.

It is interesting to compare the recognition results of Table 1
(specifically the columns forA8 andB8) with Figure 2. The digits
demonstrating the greatest recognition gains are also those with
the greatest variation capture at a given dimensionality.

The interaction between HyDrA’s inherent trade-offs is also in-
teresting to consider. Figure 2 indicates gains for a large number



of clusters. Offsetting these gains, however, are estimation losses.
First, there are the losses due to cluster training. For 18 clusters,
for example, there were some clusters that were trained on less
than 100 utterances. Second, there is the difficulty of the estima-
tion of the adaptation coefficients themselves. Given our relatively
short adaptation unit, it is clear that very few adaptation parameters
can be reliably estimated. On the other hand, it bears emphasizing
that the current architecture provides instantaneous adaptation on
just a single word (often single syllable) of speech.

Another trade-off involves the relative parametric complexities
of the diffuse and complex models. Here, the estimation of the
adaptation coefficients is at odds with the validity of their export
to the complex model domain. That is, the more similar the diffuse
and complex models are, the more meaningful is the application in
the complex domain of adaptation coefficients derived in the dif-
fuse domain. On the other hand, the smoothing inherent in diffuse
models provides for efficient estimation of the adaptation coeffi-
cients on a very small amount of data.

It bears mentioning that the HyDrA processing captures all vari-
abilities without prejudice. As a result, it is likely that subtle pho-
netic variations present in tri- and penta-phone acoustic modeling
could be captured in a HyDrA model using less defined (and fewer)
decision-tree allophones, thus mitigating the parametric multipli-
cation due to the HyDrA modeling.

4. FUTURE WORK

A final trade-off has been identified as critical for the future of this
research. The size of the adaptation unit should not be so large that
its inherent complexity requires too many clusters to capture. On
the other hand, the present HyDrA architecture makes use of the
long-term correlation implicit in a long adaptation unit.

In general, of course, one would like to be able to smooth adap-
tation parameters over a long duration of speech, having their esti-
mation benefit from more data. To this end, we suggest a research
trajectory below.

Let us choose a small adaptation unit, for example, an allophone
state. This will result in a high degree of variability capture over a
few dimensions. Further, let us construct a “cluster co-occurence
matrix” that accumulates the times in which cross-adaptation-unit
clusters co-exist in the same utterance over the training corpus. In
effect, we abstract the long-term correlations that likely enhance
HyDrA performance and re-apply them via an external mecha-
nism. With suitable normalization, the cluster co-occurence matrix
represents an estimate of the pair-wise conditional cluster proba-
bilities. That is, we divide the co-occurence counts by the total
number of times the associated adaptation unit is represented in
each row.

For each hypothesisj in a recognition first pass of a given ut-
terance, the average joint pair-wise probability of the set of esti-
mated adaptation coefficients will be estimated by the quadratic
form C

T
j PCj=Nj whereCj is the concatenation of adaptation

coefficients for the hypothesisj, Nj is the total number of adap-
tation units for that hypothesis andP is the pair-wise conditional
cluster probability matrix. We would expect that adaptation coef-
ficients in keeping with the behaviour of the training corpus would
score better with this criterion than those derived from misrecog-
nition hypotheses. Of course, there are a number of possible ways
in which to make use of this information. For example, the joint
pair-wise adaptation coefficient probability could be added to the

over-all hypothesis score or applied in a manner similar to the vari-
ability capture coefficientf .

Clearly, an external mechanism like the one outlined above is
important to capture long-range correlations in the context of Hy-
DrA processing. Moreover, it is interesting to consider such a
mechanism to fill the role of a super-segmental processing appar-
ently at work in human recognition [10]. We expect, in keeping
with the behavior of traditional adaptation methods, that the aver-
aging over a long duration of speech will enhance the adaptation
performance considerably.

5. CONCLUSION

In this article, a novel method for instantaneous adaptation has
been introduced. While cumbersome and computationally inten-
sive, the present method provides gains over conventional process-
ing of the same active parametric complexity. The behaviour of the
proposed processing has been demonstrated at a state-of-the-art
operating point on a pseudo-isolated word task in difficult circum-
stances (noisy wireless telephone speech) and a reasonably con-
fusable lexicon of very short words.
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