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ABSTRACT applications, however, we would wish to have reliable adaptation
on the basis of minimal data. In fact, it would be highly desirable

N l(? th'z achIe,_;]new archl_tetgture for Sﬁeed: recogtﬂ!tlon 1SN 46 have an adaptation process that provides significant gains on the
roduced. As with many existing speech systems, this new ap-very first word spoken by any given speaker.

proach involves multi-pass processing. In the present case, how- . . o .
Recently, Kuhn et al. introduced “eigenvoices,” a mechanism

ever, second-pass models are constructed on-line for each activeh i . v f h ith
hypothesis. Models for each hypothesized segment of the currenfat rélies on considerably fewer parameters than either MLLR or

utterance are constructed from linear combinations of “data clus- VAP [6]- In consequence, it has been shown to provide successful

ter models” that have been trained on low-variability clusters of the 2daptation on very little data indeed. A similar adaptation mecha-

training corpus. The data cluster weights are determined using ariS™ Was recently proposed in [7].
“eigenvoice” mechanism that is operative on low-complexity, low- There are three admitted weaknesses with the eigenvoices strat-
definition models. Once determined, the same weights are usec®gy- First, the mechanism seems to work best in a “diffuse” model
to construct high-complexity, high-definition second-pass mod- space. Indeed, the observation probability density functions (pdfs)
els generated over ttsame data clusters. Results from a simple of the eigenvoice examples in the literature are Gaussians rather
recognition task are reported to demonstrate the interesting propthan the common, and typically much more effective in terms of
erties of the new architecture. The limitations, trade-offs and somerecognition power, mixture-of-Gaussians. Second, it is not at all
possible extensions of the proposed approach are discussed.  clear that a given speaker cannot have entirely different eigenvoice
coefficients in different phonetic contexts. That is, it is possible
that the phonetic dependence so critical to traditional adaptation
mechanisms may also be active in the present case. In keeping
State-of-the-art speaker-independent ASR systems perform cony\”th th_ls.con5|derat|on, recent work has demonstra_ted gains by
. . maintaining speaker clusters at a subword-level [8]. Finally, eigen-
siderably worse than corresponding speaker-dependent systems. . . : .
. o . RO . Voice gains have been most noticeable in the context of speakers
The natural solution to this difficulty is adaptation: adjusting either e . : LT
. . for whom training data is available. This is in direct constrast to
models or features in a manner appropriate to the current speake{ . . . .
) . he more conventional adaptation mechanisms that are specially
and environment. Unfortunately, while humans seem to be able . . o
- L effective for speakers for whom some speaking characteristics do
to adapt to a new speech environment in just a few syllables [1],

commercial ASR adaptation requires considerably more adapta-nOt exist in the training corpus [5]. Further to this observation,

tion data. while thg speaker-specific clu_stering inherent in the eigenvoice lit-
There are two adaptation mechanisms that have received Congra_turt_e_ls natural and convenient, we observe that the_lntra-speaker

. o . ; variability of speech may well be of the same magnitude as the

siderable attention in the last decade. The first, Maximum A POSte'inter-speaker variability [9]

riori (MAP) adaptation perturbs the model parameters in the direc- i ' i

tion of the observed speech [2]. The second, Maximum Likelihood ~ 'N€ present article attempts to address each of these issues. In-

Linear Regression (MLLR) adaptation estimates a linear transfor- deed, the three significant departures of the present work from that

mation that results in a maximum likelihood score using the given due to Kuhn etal. are:

models [3, 4].

Two essential difficulties plague acoustic model adaptation.
First, the appropriate transformation or perturbation has been
shown to depend highly on the phonetic class of the observations.
As aresult, itis difficult to use data from a given phonetic class to
adapt data from a significantly different phonetic class [5]. Sec-
ond, both of these conventional techniques require a relatively o pata clustering rather than speaker identity is used as the ba-
large amount of data on the basis of the usual relationship between s for eigenvoice construction.
training data and parametric complexity. For commercial speech

This article reports work that was done while the author was with N the next section a new architecture for speech recognition
Nortel Networks OpenSpeech Labs, Mat’ The helpful discussions that we will callHypothesisBriven Adaptation (HyDrA) will be
and encouragement of Drs. D. Boies and B. Dumoulin are gratefully introduced. Subsequent sections will report results of HyDrA pro-
acknowledged. cessing on a simple recognition task and discuss their implications.

1. INTRODUCTION

e Eigenvoice coefficients estimated from diffuse-model eigen-
voices are exported to a complex model context for rescoring.

e Eigenvoices are constructed independently for phonetic
classes (i.e., adaptation units).




2. HYDRA ARCHITECTURE this supervector onto the space of appropriate eigenveiggsis
now obtained. In effect,

The eigenvoice concept depends on the observation that any
amount of speech can be considered to reside in the space of mg = [my; moy - --my ] cp
“super-vectors” consisting of HMM parameters [6]. While it is ) . . .
possible to make use of any and all such parameters, the preseﬁ'fhe resulting adaptation coefficients are then exported into the
work takes only the means of the Gaussians by which the HMM complex model space, and the adapted complex mdelelsre
observation pdfs are parametrized. If HMM parameters are re-constructed using the corresponding Ilnear_cor_nblnatlon of the
estimated over as little as a single utterance, that utterance is im<luster-re-estimated complex models. Rescoring is now performed
plicitly represented in the appropriate phonetic subspace. In the®" the N-best list or word lattice using the constructed complex
development that follows, this re-estimation procedure appears formodels. _ o o
both training sub-corpora and individual utterances. As a result, _1he cluster-match mechanism at work in Figure 1 is neither a
single utterances can be related directly to training sub-corpora. Simple projection nor the MLED from [6], which is essentially

In Figure 1, the proposed architecture for speech processing is2 masked transformed projection. Rather, the adaptation coeffi-
illustrated. Data clusters for a given adaptation unit, representedc/ents are the solution to the “doubly-convex” optimization prob-
by training sub-corpora and constructed to reduce the variability'€M- That is, we minimize the quadratic (convex) function
within each cluster, are labellddC, DC> DCs --- DCL. These
clusters are identical above and below the dotted line which delim-
its the domain of diffuse models from that of complex models. The
training of the unit-data-cluster modats, (the eigenvoices) and
b, is accomplished using a re-estimation mechanism that main- a) E[L_l =1
tains parameter-wise alignment across all of the these models. In b) o> 0._ 1<r<I
effect, the segmentation that is active for all re-estimations is due t ! =7 =
to the same modelsy, or by in the diffuse and complex domains,
respectively.

J(c) = [mims---mz]c — m]||?

under the convex-set constraints

In this manner, we are certain to obtain a solution that lies “inside”
the simplex defined by the data cluster models.

A final mechanism is necessary to ensure that the export of the
adaptation coefficients from the diffuse model space to that of the
complex models is meaningful. This is represented by a “fall-
back” strategy for those utterance-choice pairs in which the ob-
bc, b, bc, bc, servation cannot be represented accurately by the data clusters. A

I I I I variability-capture coefficienf is introduced, and used to provide
an interpolation between the base complex modaj} énd those
suggested by the adaptation coefficients, as illustrated in Figure 1.

1 1 1 1 1 For the present, we will use the simple relation
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subject to constraints When the variability capture is high, the objective functidris
..................................... small relative to the norm ofn and f is consequently close to
v unity. On the other hand, if the cluster models cannot represent the
b '—] c+(@-NHbo given adaptation unit, the objective function can be quite large, in
by by bg by which event the model adaptation falls back to the base models.
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3. EXPERIMENTATION

I I I f HyDrA processing is now illustrated in the context of a small-
DC DC DC DC vocabulary pseudo-isolated word task. A corpus consisting of
around 15k noisy wireless “telephone number” utterances spoken
in Quebec French were automatically segmented to create roughly
13k utterances of each of the ten French digit$N, DEUX,
Complex Modelsbg TROIS, QUATRE, CINQ, SX, SEPT, HUIT, NEUF & ZERO. Of

] o ) these, one thousand of each digit were randomly selected and set
Fig. 1. Hypothesis-Driven Adaptation aside as test sets, and the rest were used for training. Note that

though the digits were spoken “continuously,” the automatic seg-
For each utterance presented to the recognizer, a first-passnentation results in artificially isolated words.
recognition reduces the search space down to a N-best listor word A simple mono-Gaussian-pdf CDHMM (i.e., the “diffuse”
lattice. For each adaptation uriitrepresented in this rescoring model) was created and trained independently with each training
domain, adaptation coefficientg are estimated. First, a super- utterance. Word-specific models having between nine and twelve
vector is constructed by re-estimating the diffuse model parame-states were used to represent each digit. Feature vectors consisted
ters with the utterance at hand. A constrained projeatignof of five MFCCs, their “deltas,” delta-energy and delta-delta-energy.




Note that the use of a word as an adaptation unit was for concept3.3. Further analysis

exploration only. This issue will be discussed in a subsequent sec- . -
tioﬁ Y g In [6], an eigen-decomposition of speaker dependent models

The supervectors obtained by the re-estimation of the training demonstrates that_ no fewer than fourteen dlr_nen_sm_ns (i.e., fifteen
clusters) are required to capture half the variability in the spoken

utterances were clustered using the standard k-means algorithmEnglish alphabet. The same paper reports that the most signif-

The training set partitions implicitly resulting from this clustering . . - . - X ;
were then used to construct eigenvoices for each word for both thelcant dimension (eigenvoice) representing speaker sex is shown

diffuse model and a complex model. The feature vectors for the 1© CaPture less than 20% of all variability. Unfortunately, the re-

complex models are similar in construction to those of the diffuse ported observation is biased by the fact that the corre_latp_n matrix

model but with nine MFCCs rather than five, for a feature vec- ncludes the “mean” supervector. Moreover, the variability over

tor size of twenty. Mixture pdfs were made up of eight Gaussians the_ speakers considered in .[6] IS a_lso "”?'ted- Thus, the aCt“‘?"

each, and each (word-dependent) phone had a single tied full coVariation capture of the dominant dimension over all speakers is

variance matrix. typically less than 10% for short words, and even less for longer
While the standard HyDrA processing would involve an N-best words.

rescoring, this aspect of the recognition process has been relaxed Var_latlon dlmensmnahty can similarly be examined by the con-
within the context of this artificially constrained task. struction of matrices whose columns are the super-vectors used in

the clustering procedure used above. The typical matrix has be-
tween 108 and 144 rows (i.e., the number of statabe number
of features for the diffuse models) and around 12k columns (i.e.,
Five different processings were applied to 1 test utterances: theTr;umber oflgttedrances)l. _ 4 <o I -
L w7 qe g m T e normalized cumulative squared singular values of the
* HyDrA processing: #is™ L = 18;"As™ L =8 mean-removed matrices of this type were obtained to indicate the

3.1. Protocol

* Benchmark HMM processing: degree of variability present in a given number of dimensions. Fig-
— “Bg" by (8 Gaussians/pdf) ure 2 displays these curves for each of the digits. from this figure,
— “Bsy” 16 Gaussians/pdf and gender clusters o
— “Bha4” pdf fusion of by bz - - - byg (144 G/pdf) o[ . X
| + DEUX ]
The reason that three benchmarks are considered is that it is | © TROS 2 H s o]
difficult to know of what a “fair” benchmark model consists. On c o ama IO P
the one handBs represents the case in which the conventional zoy | o X UK S PRSP S
processing shares the same parametric complexity as the “active” ,“:_’607 s HUIT 8 JER! i * et |
HyDrA model. On the other hand, the parametric complexity of £ o e 5 x T 8
Bia4 is the same as thtetal parametric complexity of the HyDrA 2% $ g ° g # ]
processing. Obtained by the pdf-level fusion of the HyDrA clus- 2sq- ! 9 i
ter models, this benchmark makes each of the HyDrA parameters °d s b * |
active in recognition. The remaining benchmark is another inter- s 5 0 !
esting case: an intermediate parametric complexity with a more 40- S 1
traditional clustering strategy. . gt |
v ioe
3 i i * L i i i i i i
32 Re&”’[s 2 4 6 dimégsion #1.2 14 16 18 20
Recognition results for the five processings under consideration Fig. 2. Dimensional variation capture for French digits

are summarized in Table 1, below. The almost 50% ERR for the

digit SEPT bears mention. Other results of interest include the e see, for example, that there is considerably greater variability in
surprising differences between the performancgoand B for the two-syllableZERO than in the one-syllabl&EPT. Moreover,
DEUX andSIX. to capture 50% of the variability of the average digit, at least eight
dimensions would be necessary. Note that this is less than reported

Table 1. Recognition summary in [6] due to the much smaller adaptation unit.

dlglt A18 Ag Bs B3> Biaa . )
3.4. Discussion
% ggg ggg gjg ggé ggg The performance of HyDrA is clearly sensitive to the relative sizes
3 986 985|985 992 990 of its component;. Fo_r t_exar_nple_, if the n_umber_ pf clusters is _too
4 955 960| 954 961 964 large, the estimation difficulties inherent in traditional adgptatlon
5 973 97.2| 967 97.2 97.7 _me_thod_s yV|II arise. _O_n the other hand, too few clusters will result
6 954 953|917 951 96.1 in |ns_,uf_f|C|ent v_emablllty capture. N
7 952 951| 91.3 91.8 917 It is interesting to compare the recognition results of '_I'a_ble 1
8 969 966! 96.6 954 959 (specmcally_ the columns fads andB_g)_ with F_lgure 2. The digits _
9 96.8 963| 964 971 97.0 demonstrating t_he_ greatest recognition gains are al_so those with
0 991 989| 989 989 99.2 the greatest variation capture at a given dimensionality.
i : : i i The interaction between HyDrA's inherent trade-offs is also in-
all | 96.7 96.6] 955 96.0 96.4 teresting to consider. Figure 2 indicates gains for a large number



of clusters. Offsetting these gains, however, are estimation lossesover-all hypothesis score or applied in a manner similar to the vari-
First, there are the losses due to cluster training. For 18 clustersability capture coefficienf.
for example, there were some clusters that were trained on less Clearly, an external mechanism like the one outlined above is
than 100 utterances. Second, there is the difficulty of the estima-important to capture long-range correlations in the context of Hy-
tion of the adaptation coefficients themselves. Given our relatively DrA processing. Moreover, it is interesting to consider such a
short adaptation unit, it is clear that very few adaptation parametersmechanism to fill the role of a super-segmental processing appar-
can be reliably estimated. On the other hand, it bears emphasizingntly at work in human recognition [10]. We expect, in keeping
that the current architecture provides instantaneous adaptation omvith the behavior of traditional adaptation methods, that the aver-
just a single word (often single syllable) of speech. aging over a long duration of speech will enhance the adaptation
Another trade-off involves the relative parametric complexities performance considerably.
of the diffuse and complex models. Here, the estimation of the
adaptation coefficients is at odds with the validity of their export
to the complex model domain. That is, the more similar the diffuse
and complex models are, the more meaningful is the application inin this article, a novel method for instantaneous adaptation has
the complex domain of adaptation coefficients derived in the dif- been introduced. While cumbersome and computationally inten-
fuse domain. On the other hand, the smoothing inherent in diffusesive, the present method provides gains over conventional process-
models provides for efficient estimation of the adaptation coeffi- ing of the same active parametric complexity. The behaviour of the
cients on a very small amount of data. proposed processing has been demonstrated at a state-of-the-art
It bears mentioning that the HyDrA processing captures all vari- operating point on a pseudo-isolated word task in difficult circum-
abilities without prejudice. As a result, it is likely that subtle pho- stances (noisy wireless telephone speech) and a reasonably con-
netic variations present in tri- and penta-phone acoustic modelingfusable lexicon of very short words.
could be captured in a HyDrA model using less defined (and fewer)
decision-tree allophones, thus mitigating the parametric multipli-
cation due to the HyDrA modeling.

5. CONCLUSION
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mation benefit from more data. To this end, we suggest a research [4]
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clusters co-exist in the same utterance over the training corpus. In
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score better with this criterion than those derived from misrecog- 10]
nition hypotheses. Of course, there are a number of possible wayé

in which to make use of this information. For example, the joint
pair-wise adaptation coefficient probability could be added to the



