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ABSTRACT

We present in this paper a novel algorithm for single chan-
nel speech enhancement. It is based on a subspace ap-
proach in the Bark domain and an optimal subspace se-
lection by the minimum description length (MDL) crite-
rion. The processing in the Bark domain allows us to take
into account in an optimal manner the masking proper-
ties of the human auditory system. The subspace selection
provided by the MDL criterion overcomes the limitations
encountered with other selection criteria, like the overes-
timation of the signal-plus—noise subspace or the need
for empirical parameters. Together, the resulting MDL-
subspace approach in the Bark domain provides maximum
noise reduction while minimizing signal distortions. The
performance of our algorithm is assessed in white and col-
ored noise. It shows that our algorithm provides high per-
formance for a large scale of input signal-to-noise ratio.

1. INTRODUCTION

Speech enhancement is often necessary to reduce listener’s
fatigue or to improve the performance of automatic speech
processing systems. Therefore, several single channel en-
hancement algorithms using the Discrete Fourier Trans-
form (DFT), such as subtractive-type approaches [1, 2] or
Wiener filtering, have been developed. The major prob-
lem with most of these methods is that they suffer from
a distortion called “musical noise” [7]. To reduce this
distortion one can replace the DFT by the Discrete Co-
sine Transform (DCT) [3]. Further improvements have
been achieved by using perceptual properties of the hu-
man auditory system [1] or eigenspace approaches based
on Karhunen-Loeve Transform (KLT) [4, 5]. Notably, it
has been shown that highest performance is obtained when
using KLT with an associated subspace selection using
the Minimum Description Length (MDL) criterion [6, 5].
Nevertheless, such an approach is not appropriate for real
time implementation since the eigenvectors or eigenfilters
have to be computed during each frame, which implies
high computational requirements. To circumvent this draw-
back we use prior knowledge about perceptual proper-
ties of the human auditory system, that is, we substitute
eigenfilters in the KLT approach by the so-called Bark fil-
ters [7]. Since it has been shown that the discrete cosine

transform (DCT) outperforms the discrete Fourier Trans-
form (DFT) in terms of speech energy compaction [3], we
perform the Bark filtering in the DCT domain. Thus, our
approach consists of a MDL based subspace approach in
the DCT-Bark domain. As a such, it represents a merging
of three well known single channel speech enhancement
algorithms, namely KLT based subspace approaches [4,
5], speech enhancement based on masking properties of
the human auditory system [1] and speech enhancement
using DCT [3]. Our algorithm yields the robustness of the
KLT based subspace approach together with the low com-
putational requirements of the DCT and the high percep-
tual performance due to the inclusion of noise masking.
The statistical robustness of the algorithm is ensured by
the MDL criterion which provides a consistent parameter
estimator and allows us to implement an automatic noise
reduction algorithm that can be applied almost blindly to
the observed data.

2. PROPOSED SUBSPACE APPROACH

2.1. Global Framework for a Subspace Approach

Consider a speech signal s(t) corrupted by an additive sta-
tionary background noise n(t). The observed noisy signal
can be expressed as follows:

z(t) = s(t) + n(t) t=0,...,Ny—1 (1)
where N, is the number of observed samples. We propose
in this paper a subspace algorithm operating on a frame-
by-frame basis with a frame length of IV samples (see Fig-
ure 1). In a general way we can formulate the basic idea
in subspace approaches as follows: the noisy data is ob-
served in a large m—dimensional space of a given dual
domain (for example eigenspace computed by KLT [4]).
If the noise is random and white, it extends approximately
in a uniform manner in all the directions of this dual do-
main, while in contrast, the dynamics of the deterministic
system underlying the speech signal confine the trajecto-
ries of the useful signal to a lower—dimensional subspace
of dimension p < m. As a consequence, the eigenspace
of the noisy signal is partitioned into a noise and a signal—
plus—noise subspace. Enhancement is obtained by nulling
the noise subspace and optimally weighting the signal—
plus—noise subspace [4].
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Figure 1: The proposed enhancement algorithm.
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The optimal design of such a subspace algorithm is a dif-
ficult task. The subspace dimension p should be chosen
during each frame in an optimal manner through an ap-
propriate selection rule. Furthermore, the weighting of
the signal—plus—noise subspace introduces a considerable
amount of speech distortion. In order to simultaneously
maximize noise reduction and minimize signal distortion,
we have presented recently a promising approach consist-
ing in a partition of the eigenspace of the noisy data into
3 different subspaces [5](see Figure 1):

1. A noise subspace of dimension m — po, which con-
tains mainly noise contributions. These components
are nulled during reconstruction.

2. A ssignal subspace of dimension p; containing com-
ponents with high signal-to—noise ratios SNR; >>
1. Components of this subspace are not weighted
since they contain mainly components from the orig-
inal signal. This allows a minimization of the signal
distortion.

3. Asignal-plus—noise subspace of dimension p, —p1,
which includes the components with SNR; ~ 1.
The estimation of its dimension can only be done
with a high error probability. Consequently, com-
ponents with SNR; < 1 may belong to it and a
weighting is applied during reconstruction.

In classical subspace approaches components of the dual
domain are obtained by applying the eigenvectors or eigen-
filters computed by KLT on the delay-embedded noisy
data [4, 5]. To avoid the large computational means re-
quired for these operations, we use in this paper masking
properties of the human auditory system in order to sub-
stitute the eigenfilters by the so-called Bark filters [5].

2.2. Bark Filtering using Masking Properties of the
Human Auditory System

Noise masking is a well known feature of the human au-
ditory system. It denotes the fact that the auditory system

is incapable to distinguish two signals close in the time
or frequency domains. This is manifested by an elevation
of the minimum threshold of audibility due to a masker
signal, which has motivated its use in the enhancement
process to mask the residual noise and/or signal distor-
tion [1]. The most applied property of the human ear is
simultaneous masking. It denotes the fact that the per-
ception of a signal at a particular frequency by the audi-
tory system, is influenced by the energy of a perturbating
signal in a critical band around this frequency. Further-
more, the bandwidth of a critical band varies with fre-
quency, beginning at about 100 Hz for frequencies below
1 kHz, and then increasing up to 1 kHz for frequencies
above 4 kHz. From the signal processing point of view
the simultaneous masking is implemented by a critical fil-
terbank, the so-called Bark filterbank, which gives equal
weight to portions of speech with the same perceptual im-
portance [7]. This prior knowledge about the human au-
ditory system can be used to replace the eigenfilters in the
KLT approach by Bark filtering. In order to have a max-
imum energy compacting the filtering is processed in the
DCT domain [3]. Since Bark filtering is based on energy
considerations we use the square of the DCT components.
Finally we obtain the Bark components by

b2
X (k)Bark = Z G(j. k) {X(k)}2 k=0,....,N-1

j=—b/2

)
where b + 1 is the processing-width of the filter, G(j, k)
is the Barkfilter whose bandwidth depends on & and X (k)
are DCT components defined as:

N-1
X(k) = a(k) Y z(t)cos {W} ©)
t=0

where a(0) = /1/N and «(k) = /2/N for k # 0.
More details about DCT and its application in speech en-
hancement can be found in [3]. At this point it is impor-
tant to note that by computing dual domain components
as given by Equation (2), we obtain a dual domain of di-
mension m = N.

2.3. Subspace Selection based on MDL

A crucial point in the proposed algorithm is the adequate
choice of the dimensions of the signal—-plus—noise (p-) and
the signal subspace (p;). It requires the use of a trun-
cation criterion applicable for short time series. Among
the possible selection criteria, the MDL criterion has been
shown in multiple domains to be a consistent model order
estimator, especially for short time series [8, 9, 5]. This
high reliability and robustness of the MDL criterion con-
stitutes the primer motivation for its use in our approach.
To achieve this task, we assume that the Bark components
given by Equation (2) rearranged in decreasing order con-
stitute a liable approximation of the principal components



of speech. Under this assumption the following expres-
sion is obtained for the MDL in the case of additive white
Gaussian noise [5]:
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wherei = 1,2, M = p;N — p?/2 + p;/2 + 1 is the num-
ber of free parametersand A; forj = 0,..., N —1arethe
Bark components given by Equation (2) rearranged in de-
creasing order. The parameter v determines the selectivity
of MDL. Accordingly, the dimension of the signal p; and
the signal-plus—noise subspace p, are given by the mini-
mum of M DL(p;) with v = 64 and v = 1 respectively.
This choice of v involves that the parameter p; provides
a very parsimonious representation of the signal whereas
p2 selects also components with SNR; = 1. In order to
illustrate the efficiency of the MDL based subspace selec-
tion we show an example in Figure 2e. Its analysis high-
lights an important feature of our method, namely a null
signal subspace for frames without any speech activity,
which yields very reliable speech/noise detector. This in-
formation is then used in our algorithm to update the Bark
spectrum and the variance of noise during frames without
any speech activity, which ensures eventually an optimal
signal prewithening and weighting. Notably, it has to be
pointed out that the prewhitening of the signal is important
since MDL assumes white Gaussian noise [5].

2.4. Reconstruction of Enhanced Signal

The enhanced signal is obtained by applying the inverse
DCT to components of the signal and weighted compo-
nents of the signal-plus—noise subspace. Using the defi-
nition of the inverse DCT [3] it can be written as:

§) =) an®)®i+ Y. giag ()@ (5
j=1
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m(2t + 1)k 12 ar .
ax(t) = a(k)cos {T} P, = ,\j/ exp®9tX (L)}
(6)
where \; forj =1,..., N are the Bark components given

by Equation (2) rearranged in decreasing order, I; is the
index of rearrangement and g, is an appropriated weight-
ing function given by:

gJ:eXp{_V/SNRJ} J:P1+1,:p2 (7)

where the parameter v is adjusted through a nonlinear
probabilistic operator in function of the global SN R and
SNRj forj =0,...,N — 1is the estimated signal-to-
noise ratio of each Bark component.

3. PERFORMANCE EVALUATION

3.1. Compared Algorithmsand Databases

For the performance evaluation, we have compared the
following single channel enhancement algorithms:

1. NSS: nonlinear spectral subtraction using DFT [2].

2. Eph95: subspace approach by Ephraim et al. using
the KLT [4]. This approach has been developed for
white Gaussian noise only.

3. BARK-MDL: proposed subspace approach.

The testing database has been created by adding different
types of background noises from the Noisex database to
the clean speech signals, at SNRs ranging from 0 dB to
20 dB. The sampling frequency is 8 kHz, the frame size
N=256 samples and we apply Hanning windowing with
50 % overlap. The performance evaluation is based on the
segmental signal-to-noise ratio (SN R) and the ltakura—
Saito distortion measure (I.5), the observation of the spec-
trograms as well as informal listening tests. To obtain a
relevant performance assessment we have computed the
mean value of SN R and I.S after discarding frames with-
out any speech activity.

Generally, we have observed that subspace approaches out-
perform linear and nonlinear subtractive—type methods us-
ing DFT. In particular, subspace approaches yield a con-
siderable reduction of the so-called “musical noise”. This
observation is confirmed quantitatively in Table 1 in the
case of colored noise, since smaller IS values have been
obtained for BARK-MDL than for NSS. In a qualitative
way, this observation has been confirmed by informal lis-
tening tests but also through inspection of the spectro-
grams in Figure 2. Indeed, the analysis of Figure 2c high-
lights that NSS provides a considerable amount of residual
“musical noise”. In contrast, Figure 2d underlines the high
performance of the proposed approach since it extracts the
relevant features of the speech signal and reduces the noise
to a tolerable level. This high performance confirm previ-
ous results on the efficiency and consistency of the MDL
based subspace algorithms[5].

Noisy Bark—-MDL Eph95
SNR IS SNR IS SNR IS
5dB | 416 || 11.4dB | 1.68 || 10.2dB | 1.81
10dB | 3.12 || 13.5dB | 0.95 || 13.9dB | 1.31
15dB | 1.81 || 17.3dB | 0.68 || 17.5dB | 0.74

Table 1: Segmental SNR and Itakura—Saito measure in the
case of white Gaussian noise.
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Figure 2: Speech spectrograms: (a) original French
speech signal: Un loup s’est jeté immédiatement sur la pe-
tite chévre , (b) noisy signal (non-stationary factory noise
at an segmental input SN R = 10 dB), enhanced signals
using (c) NSS, (d) BARK-MDL, (e) signal and signal—
plus—noise subspace dimension estimated by MDL.

If we compare the subspace approaches, we can see in Ta-
ble 1 that our method provides similar performance with
respect to Eph95. However, it has to be pointed out that
the computational load of BARK-MDL is reduced by an
order of magnitude with respect to Eph95. Furthermore,
an important additional feature of our method is that it
is highly efficient and robust in detecting speech pauses,
even in very noisy conditions. This can be observed in
Figure 2e, for the signal subspace dimension is zero dur-
ing frames without any speech activity.

4. CONCLUSION

We have presented in this paper a novel subspace approach
for single channel speech enhancement in adverse noisy
environments. Our method is based on a subspace ap-
proach in the Bark domain with a subspace selection pro-
vided by the MDL criterion. The performance evaluation
based on segmental SNR, Itakura—Saito distortion mea-
sure, observation of the spectrograms, as well as informal
listening tests, shows that our algorithm provides simi-
lar performance as eigenspace approaches based on KLT.

Noisy Bark—-MDL NSS
SNR IS SNR IS SNR IS
5dB | 1.78 || 89dB | 083 || 7.4dB | 1.14
10dB | 0.85 || 12.9dB | 0.32 || 11.9dB | 0.41
15dB | 0.26 || 16.8dB | 0.08 || 16.5dB | 0.12

Table 2: Segmental SNR and Itakura—Saito measure in the
case of non-stationary factory noise.

However, since our algorithm operates in the DCT domain
its computational requirements are very low. This feature
together with the high robustness and perceptual perfor-
mance promote our algorithm as a promising solution of
for real time speech enhancement in real world conditions.
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