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Abstract 

A source coding technique for variable, bandwidth-

constrained channels such as the Internet must do two things: 

offer high quality at low data rates, and adapt gracefully to 

changes in available bandwidth. Here we propose an audio 

coding algorithm that is superior on both counts. It is inherently 

scalable, meaning that channel conditions can be matched 

without the need for additional computation. Moreover, it is 

compact: in subjective tests our algorithm, coded at 

32kb/s/channel, outperformed MPEG-1 Layer 3 (MP3) coded at 

56kb/s/channel (both at 44.1kHz). We achieve this simultaneous 

increase in compression and scalability through use of a two-

dimensional transform that concentrates relevant information into 

a small number of coefficients. 

1 Introduction 
The advent of the Internet has fueled interest in streaming 

audio. Several subband/transform audio coding techniques [1,2] 

have been applied to this problem. These methods offer good 

compromises between coding rate and quality, and give 

acceptable results using 48 kilobits per second per channel at a 

sample rate of 44.1 kHz. Unfortunately, bandwidth over the 

Internet is not only scarce—it is also highly variable. A good 

source coding technique for this channel must therefore offer not 

only compression, but also scalability: it must gracefully adapt to 

changing channel capacity after encoding. 

In this paper we present an audio coding algorithm that 

offers improvements in both bit rate and scalability. Both gains 

are rooted in our use of a two-dimensional transform that 

concentrates relevant information into a small number of 

coefficients. We begin by describing this transform. We then give 

a brief overview of the audio coding scheme that is built around 

this transform, and illustrate its inherent scalability. Lastly we 

present the results of simple subjective tests that compare our 

algorithm to MPEG-1 Layer 3 (MP3). 

  

2 Two-Dimensional Transform Design 
Transform-based audio coders achieve compression by 

using signal representations such as lapped transforms [1,2] and 

pseudo quadrature mirror filters [3]. Typically, these 

representations offer the advantage that quantization effects can 

be mapped to areas of the signal spectrum in which they are least 

perceptible. 

Prior research has explored two-dimensional energetic signal 

representations where the second dimension is the transform of the 

time variability of signal spectra [4,5]. This second dimension is 

often called the “modulation dimension” (e.g. [6]). When applied 

to signals, such as speech or audio, that are effectively stationary 

over relatively long periods, this second dimension projects most 

the signal energy into a few low modulation frequency 

coefficients. Moreover, mammalian auditory physiology studies 

have shown that physiological importance of modulation effects 

decreases with modulation frequency [7]. While these traits 

suggest an approach for ranking the importance of transmitted 

coefficients and coding at very low data rates, this past work has 

provided an energetic yet not invertible transform. What is instead 

needed is a transform, which after modification to a lower bit rate, 

is invertible back to a high-fidelity signal. 

Our paper shows that there are modulation frequency 

transforms that are indeed invertible after quantization. Our design 

allows for essentially CD-quality music coding at 32 kilobits per 

second per channel and provides a progressive encoding which 

naturally and easily scales to bit rate changes.  
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Figure 1. Simplified structure of the two-dimensional transform. 
 

Figure 1 depicts a simplified overview of the new transform. 

To obtain a signal transform that allows signal modification in the 

transform domain, care must be taken to prevent distortion caused 

by edge discontinuities. For this reason, the two-dimensional 

transform was derived from the time domain aliasing cancellation 

(TDAC) filter bank introduced by Princen and Bradley [8], which 

provides a 50% overlap in time while maintaining critical 

sampling. The input signal [ ]x n  is windowed by a Kaiser-Bessel 

[9] windowing function 1[ ]w n , to achieve the window constraints 

defined in [8]. The windowed input is then transformed by either a 

modified discrete cosine transform (MDCT) or a modified discrete 

sine transform (MDST) depending on the shift index as defined by 

equations 1 and 2 below. This base transform process is essentially 

the TDAC filter bank as described in [8]. Two adjacent MDCT 

and MDST are combined into a single complex transform, as 

defined in equation 3. As illustrated in figure 1 the magnitude 

from the aforementioned transform is composed into a time-

frequency distribution. The two-dimensional magnitude 

distribution is windowed across time in each frequency bin, again 

with a 50% overlap and windowing function 2[ ]w n , a raised 

cosine. The second transform, which is given by equation 5, is 

computed to give the magnitude matrix. The second transform is 

not performed on the phase information. The phase data is 



 

 

encapsulated in a corresponding matrix to simplify understanding, 

as shown in equation 6.  
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An example of the two-dimensional transform is shown in 

the bottom panel of figure 2. The top of this figure shows the 

spectrogram of two notes of a glockenspiel and the bottom shows 

our modulation transform of the same time segment. As expected, 

most of the energy is constrained to lower modulation frequencies. 

For example the tones at 1 kHz, 4 kHz, and 7.5 kHz in the 

spectrogram plot (top of figure 2) are mapped to only the low 

modulation frequencies in the two-dimensional transform plot 

(bottom of figure 2). However the sudden onset of the tones at 4.5 

kHz and 9 kHz results in significantly more energy in the high 

modulation frequencies. This example, of a known hard-to-encode 

signal, shows an unusually large extent in modulation frequency 

due to the abrupt change of note. However, perceptual importance 

drops with increase in modulation frequency. If the length of the 

block transforms in each dimension are selected correctly, cutting 

high modulation frequency information only leads to damping of 

transient spectral changes, which is not perceptually annoying. In 

our informal experiments, we found that for most audio signals the 

overall information contained in the two-dimensional transform 

can be reduced by more than 75% before the onset of any 

significant perceivable degradation.  
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Figure 2. Spectrogram (top) and two-dimensional transform (bottom) 
of a glockenspiel signal. 

3 Coder Structure 
Adaptive signal coders can take on one of two fundamental 

frameworks: forward or backward adaptive. Forward adaptive 

architectures imply that the encoder makes all adaptive decisions 

and transmits pertinent information for decoding as side 

information. The benefits of such schemes are reduced decoder 

complexity; access to more detailed information and an encoder 

structure that can be improved in isolation. Backward adaptive 

frameworks make adaptations based on transmitted data alone. 

Such structures give up the aforementioned benefits of the forward 

adaptive scheme to reduce the extra bits of side information. Use 

of the two-dimensional transform described in the previous section 

lends itself very well to the backward adaptive architecture, 

reducing side information yet still offers detailed information for 

adaptive decisions. 

In order to map noise generated by quantization into areas of 

the spectrum where they are least perceptible, most audio 

compression algorithms calculate a model of the human auditory 

system [10]. Such models are based on an estimate of power 

spectral density of the incoming signal, which can only be 

accurately computed in the encoder. Our proposed two-

dimensional transform has the advantage of providing an implicit 

power spectral density estimate: As the first column of the 

magnitude matrix, as defined in equation 5, represents an 

approximate mean spectral density (MSD), it is used to compute a 

perceptual model and bit allocation for the remaining information.     



 

 

A simplified block diagram of the proposed encoder is shown 

in figure 3. The input [ ]x n is passed through a gain normalization 

procedure (GN) and then through the two-dimensional transform 

discussed in the previous section. The first column of the 

magnitude matrix (MSD) is used to compute a psychoacoustic 

model and bit allocation for the remaining magnitude matrix 

coefficients and the phase matrix. The first step in this process is 

to remove scale factors; the peak values of the MSD (first column 

of the magnitude matrix) are extracted from frequency groups 

approximately representing the critical band structure of the 

human auditory system. These are then converted to a logarithmic 

scale and quantized to give 1.5dB precision. The scale factors are 

then used to compute a bit allocation for quantization of the MSD, 

which is implemented via table lookup, taking advantage of 

simple perceptual criterion. The MSD is then inverse quantized 

and used in the core perceptual model to derive bit allocations for 

the remaining data. 

The remaining magnitude matrix and phase matrix are then 

quantized and the magnitude matrix coefficients are Huffman 

coded. To ensure that the target rate is met, the data from the 

magnitude and phase matrices are reordered into the bit stream 

with respect to their perceptual relevance. As discussed in Section 

2, the high frequencies in both dimensions are less important and, 

if need be, can be removed without dire consequences. 

Transmission of the information in a single frame simply 

terminates when the target data rate has been met. This 

progressive aspect of the proposed algorithm will be further 

discussed in Section 5. 

 

4 Quantization and Variable Length Coding of the 
Magnitude and Phase Matrices 

Both the magnitude and phase matrices are uniformly 

quantized and the magnitude matrix is coded with a single 

dimensional Huffman code. The wrapped phase matrix is not 

variable length coded for the obvious reason that it is has a 

uniform distribution. To prevent excessive consumption of bits to 

represent the phase matrix, at low data rates the phase information 

at frequencies above 5 kHz are not transmitted and are replaced by 

randomized phase in the decoder. This process does not lead to 

significant perceptual loss, as will be shown in the results of the 

subjective tests.  

Due to the slow non-stationarity of most audio inputs, the 

magnitude matrix displays very low entropy. Even with the use of 

only a single dimensional Huffman code, more than 40% of the 

redundancy is extracted. This is not an optimal coding technique: 

run length coding and multidimensional variable length coding 

techniques would lead to further gains. However, these methods 

interfere with the desired scalability of the technique and were 

therefore avoided. 

 
5 Progressive Encoding and Algorithm Scalability 

The key feature of the two-dimensional transform proposed 

in Section 2, is its capacity to isolate relevant information to the 

low frequencies of the modulation frequency axis. The proposed 

algorithm exploits this not only to obtain high quality at low data 

rates but also to achieve scalability. 
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Figure 3. Simplified structure of the proposed encoder. The coded 
data is progressively ordered and placed into the bit stream with 
respect to perceptual relevance. Frame transmission terminates when 
a final target data rate has been met or is at channel capacity. 

 

As discussed in Section 2, more than 75% of the information 

contained in the magnitude matrix can be discarded without 

causing annoying perceptual losses. The proposed encoder takes 

advantage of this concept to reach the desired data rate, without 

having to use the bit reservoirs or computationally intense bit 

allocation recursions as used in MPEG-1 layer 3 [11]. To achieve 

this simplicity the data is arranged into a frame packet with respect 

to perceptual relevance and transmission of the frame simply stops 

when the target data rate has been met, as shown in figure 3. Thus 

the data is progressively encoded. 

The same technique is used to accommodate for variable 

channel coding conditions, without performing additional 

calculations. As depicted in figure 3, if the channel capacity is less 

than the encoded data rate, the frame data packet is simply 

truncated to accommodate for channel requirements.   

 
6 Subjective Tests of the Proposed Codec 

The qualitative performance of the proposed algorithm was 

evaluated using a simple subjective test. The experimental 

protocol was as follows: 

• Subjects were presented with three versions of each audio 

selection: the unencoded original, an encoded signal A, and 

an encoded signal B. 

• Subjects could listen to each selection as many times as 

desired. 

• In each test, subjects were asked to indicate which, if any, of 

the encoded signals were of higher quality. 

• Three different pairs of signals were used for the encoded A 

and B signals (here the encoding rates are bits/sec/channel): 

Group 1: proposed at 32k vs. unencoded original 

Group 2: proposed at 32k vs. MP3 at 48k 

Group 3: proposed at 32k vs. MP3 at 56k 

• The MPEG-1 Layer 3 (MP3) encoder used was the ISO 

MPEG audio software simulation group’s source code. 

• The proposed algorithm used in this test had a block size of 

185ms for the sample rate of 44.1kHz. 

• Each such test was performed using three songs: 

1. Roxette “Must Have Been Love.” 

2. Duran Duran “Notorious.” 

3. Go West “King of Wishful Thinking.” 



 

 

 
A total of 25 people participated in this experiment. The 

cumulative results are shown in figures 4 through 6. Figure 4 

shows the cumulative results for the tests comparing our proposed 

algorithm at 32 kbits per second per channel to the original 44.1 

kHz compact disk source. A slight majority (56%) of subjects 

preferred the original source. The rest of the subjects could not 

distinguish the difference or preferred our encoded version. Figure 

5 shows the results from the comparison of our 32 kbit encoding 

to MP3 coded at 48 kbits, which shows the proposed algorithm 

was clearly preferable. Figure 6 shows a comparison of our 32 kbit 

encoding with MP3 coding at 56 kbits per second per channel, 

which demonstrates a similar strong trend verifying the 

advantages of our proposed algorithm. 

 

8 Conclusion 
A new audio compression algorithm was presented which 

takes advantage of a two-dimensional transform to remove 

redundancies implicit in slowly non-stationary input signals, 

while allowing sufficient control to prevent annoying perceptual 

losses. Simple subjective tests were performed and the results 

presented suggested that the proposed algorithm performed better 

quality coding at 32kb/s/channel than MPEG-1 Layer 3 coding at 

56kb/s/channel. Furthermore, the proposed algorithm was shown 

to be inherently progressively scalable, lending itself well to 

applications where bandwidth cannot be known prior to coding.   
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Figure 4. Listener preferences between the proposed algorithm at 
32Kbits/sec and the original CD.  
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Figure 5. Listener preferences between the proposed algorithm at 
32Kbits/sec and MP3 at 48kb/s. 
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Figure 6. Listener preferences between the proposed algorithm at 
32Kbits/sec and MP3 at 56kb/s. 


