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ABSTRACT

An interpolated 3-D digital waveguide mesh algorithm is elabo-
rated. We introduce an optimized technique that improves a for-
merly proposed interpolated 3-D mesh and renders the 3-D mesh
more homogeneous in different directions. Frequency-warping
techniques are used to shift the frequencies of the output signal
of the mesh in order to cancel the effect of dispersion error. The
extensions improve the accuracy of 3-D digital waveguide mesh
simulations enough so that in the future it can be used for acousti-
cal simulations needed in the design of listening rooms, for exam-
ple.

1. INTRODUCTION

The 3-D digital waveguide mesh (WGM) algorithm was intro-
duced in 1994 [1] as an extension to the formerly developed 2-D
WGM algorithm [2]. The WGM approach is suitable for modeling
acoustic wave propagation in restricted media, such as in musical
instruments or in a room. As the 3-D WGM can be used for simu-
lating wave propagation in a space, it turns out more important for
practical applications than the 2-D WGM, which is mostly useful
for physical modeling of drum membranes or other flexible vibrat-
ing surfaces. The 3-D WGM could be used as an alternative to
the popular ray-tracing, image-source, FEM, and BEM methods
in numerous practical tasks, which include the acoustical design
of concert halls, churches, auditoria, listening rooms, movie the-
aters, cabins of various vehicles, or loudspeaker enclosures.

The basic version of the 3-D WGM suffers from error in wave
travel speed, which depends on both direction and frequency [3].
This is called the direction-dependent dispersion error. It is the
main reason why the WGM method could not have been used in
many design tasks until now. To reduce the dispersion, an inter-
polation technique was incorporated in the 3-D WGM [4]. While
the mesh was made more homogeneous in different directions, the
frequency-dependence was not cured. A similar effect has been
formerly observed in the interpolated 2-D WGM [5]. As a solu-
tion, a frequency-warping method is used in the 2-D case to cut
down the remaining error [6]. Alternative 3-D mesh structures,
such as a tetrahedral network [3, 7], have been shown to be suc-
cessful in suppressing the dispersion problem, but at the expense
of a complicated tessellation of space. We believe that the useful-
ness of the method relies on an effortless filling of space, and thus
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we prefer the rectangular mesh and aim at making it an accurate
and reliable method for acoustic simulations.

The contributions of this paper are a new optimally interpo-
lated 3-D mesh structure which is preferable to the former one,
and frequency-warping methods that are optimized for the new in-
terpolated 3-D WGM. This paper is organized as follows. In Sec-
tion 2, we give a formulation of the 3-D WGM update rule as a
finite difference scheme and present an error analysis. Section 3
discusses the interpolated 3-D WGM, and Section 4 focuses on the
optimization of the interpolation coefficients. In Section 5, we ap-
ply the frequency-warping techniques to the optimally interpolated
mesh and demonstrate how the error characteristics are improved.
Section 6 presents results from a simulation of a rectangular space,
which shows that a sufficient level of accuracy has been finally
reached and that the method is ready for practical use.

2. 3-D DIGITAL WAVEGUIDE MESH

The digital waveguide mesh is based on digital waveguides [8]. In
the original three-dimensional mesh there are digital waveguides
in three orthogonal directions, and they are interconnected to each
other. The final structure is a rectangular grid, in which each node
has a neighbor at unit distance in six directions, namely up, down,
left, right, front, and back. The wave propagation in such a struc-
ture is governed by the following difference equation

p(n+ 1; x; y; z)
= 1

3
[p(n; x+ 1; y; z) + p(n; x� 1; y; z)

+p(n; x; y + 1; z) + p(n; x; y � 1; z)
+p(n; x; y; z + 1) + p(n; x; y; z � 1)]
�p(n� 1; x; y; z)

(1)

where p(n; x; y; z) represents the sound pressure at time step n at
position (z; y; z) [1]. This structure can be analyzed by Von Neu-
man analysis (see, e.g., [9]), in which a spatial Fourier transform is
performed to the difference scheme. Formerly this same technique
has been used for 2-D meshes [2]. This leads us to the dispersion
factor, which is a function of three spatial frequencies �x; �y; and
�z . The dispersion factor for the 3-D WGM is

k(�x; �y; �z) =
c
0(�x; �y; �z)

c
=

p
3

2��
arctan

p
4� b(�x; �y; �z)2

b(�x; �y; �z)
(2)

in which b(�x; �y; �z) is

b(�x; �y; �z) =
2

3
(cos!1cT + cos!2cT + cos!3cT ) (3)
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Fig. 1. The relative frequency error (RFE) in (a) the original 3-
D WGM and (b) in the optimally interpolated WGM. The curves
show the RFE in axial (solid line), 2-D diagonal (dashed line), and
3-D diagonal (dash-dotted line) directions up to the normalized
frequency 0.25 which is the upper limit in the original mesh.

where !1 = 2��x, !2 = 2��y, and !3 = 2��z.
Figure 1 shows the relative frequency error (RFE) in two 3-D

WGM structures. The RFE is related to the dispersion factor by
the following equation:

E(�x; �y; �z) =
k(�x; �y; �z)� kdc

kdc
� 100% (4)

where kdc = lim�x;�y ;�z!0 k(�x; �y; �z) in this case equals to 1.
In the original rectangular 3-D mesh the maximal RFE is 23.6% as
can be seen from Fig. 1(a).

3. INTERPOLATED 3-D DIGITAL WAVEGUIDE MESH

In earlier studies, it was shown that by using interpolation it is pos-
sible to achieve wave propagation characteristics which are nearly
independent of the wave propagation direction in the 2-D case
[5, 6]. The same technique works also in 3-D WGM systems as
shown in [4]. Similar results may be obtained with some other
mesh geometries such as a tetrahedral one [7], but they are more
laborious to construct than the simple rectangular configuration
which is applicable to the interpolated mesh.

The basic structure for the interpolated 3-D WGM is illus-
trated in Fig. 2. In the original rectangular mesh each node has
a connection to six neighbors (Fig. 2(a)), and that causes the di-
rection dependent dispersion. In the interpolated mesh the number
of neighbors is increased by adding delay-lines from a node to its
diagonal neighbors. Finally, a node has connections of three sepa-
rate type, 6 axial neighbors (Fig. 2(a)), 12 2-D diagonal neighbors
(Fig. 2(b)), and 8 3-D diagonal neighbors (Fig. 2(c)), or altogether
26 neighbors as illustrated in Fig. 2(d).

The difference scheme for the interpolated 3-D WGM is [4]

p(n+ 1; x; y; z) =P
1

l=�1

P
1

m=�1

P
1

p=�1
h(l;m; p)p(n; x+ l; y +m; z + p)

�p(n� 1; x; y; z)

(5)
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Fig. 2. (a) Six nearest neighbors in the original WGM, (b) 12 2-
D diagonal neighbors, (c) 8 3-D diagonal neighbors, and (d) all
neighbors in the interpolated WGM. The center node is indicated
with the large dot in all cases.

where h(l; m; p) are the weighting coefficients for different neigh-
bor types. In the following the coefficients are denoted as follows

h(l; m; p) =

8>>><
>>>:

ha; if jlj+ jmj+ jpj = 1

h2D; if jlj+ jmj+ jpj = 2

h3D; if jlj+ jmj+ jpj = 3

hc; if jlj+ jmj+ jpj = 0

(6)

For the original rectangular mesh ha = 1

3
and h2D = h3D =

hc = 0.
For the dispersion analysis (2) is still valid, but b(�x; �y; �z)

gets a new formulation.

b(�x; �y; �z) = 2[ha
P

i=3

i=1
cos!icT

+h2D
P

i=6

i=1
cos ÆicT + h3D

P
i=4

i=1
cos 
icT + hc

2
]

(7)

where Æi correspond to the centers of all the edges of a unit cube,
and 
i are all the corners of the spatial frequency unit cube. The
values for Æi and 
i are shown in Table 1.

Table 1. The values for spatial frequency coordinates Æi and 
i

representing the 2-D diagonal and 3-D diagonal neighbors of a
node.

Æ1 = !1 + !2 
1 = !1 + !2 + !3

Æ2 = !1 + !3 
2 = !1 � !2 + !3

Æ3 = !2 + !3 
3 = !1 + !2 � !3

Æ4 = !1 � !2 
4 = !1 � !2 � !3

Æ5 = !1 � !3

Æ6 = !2 � !3



Table 2. The optimized values for interpolation coefficients in the
interpolated 3-D WGM.

ha h2D h3D hc

0.124867 0.0387600 0.0133567 0.678827

4. OPTIMIZATION OF INTERPOLATION

Previously, trilinear interpolation was applied in the 3-D WGM
[4], but here we show how to optimize the interpolation coeffi-
cients. In the interpolated three-dimensional WGM there are two
constraints that the coefficient values must satisfy. First of all the
stability criterion states that bmax = 2, that is

bmax = 2[3ha + 6h2D + 4h3D +
hc

2
] = 2 (8)

Therefore the coefficient for the center node is

hc = 2� 6ha � 12h2D � 8h3D (9)

The second constraint comes from the dispersion factor, which
should equal to 1 at the zero frequency, that is

kdc = lim
�x;�y ;�z!0

k(�x; �y; �z) =
p
12h2D + 12h3D + 3ha

(10)

From that we can solve another coefficient. Let us choose h3D .

h3D =
1

12
(1� 12h2D � 3ha) (11)

The optimization of coefficients was performed such that the
maximal and minimal error curves are as close to each other as
possible by minimizing the area between the two curves. The re-
sulting coefficients are presented in Table 2.

In the interpolated mesh there still remains dispersion which
increases steadily as a function of frequency, as shown in Fig. 1(b).
In this case the dispersion is nearly independent of the propagation
direction which can be seen by comparing the RFE curves in three
different directions in Fig. 1(b).

5. APPLYING FREQUENCY WARPING TO REDUCE
THE DISPERSION ERROR

There are two different principles to apply the frequency warping.
In our previous studies we have utilized warping in the time do-
main, and the results have been good in the 2-D case [10, 6]. In
the case of the 3-D WGM more accurate results are obtained by
warping in the frequency domain. In the following we show re-
sults for both techniques.

5.1. Frequency warping in the time domain

Since the error curves are smooth and nearly the same in all the
directions, it is possible to apply a frequency warping to reduce
the dispersion [6]. The warping is performed to the input signal of
the mesh using a warped FIR filter [11]. A warped FIR filter is an
FIR filter, in which each unit delay element has been replaced with
a first-order allpass filter having the transfer function

A(z) = (z�1 + �)=(1 + �z
�1) (12)
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Fig. 3. Obtained RFE in three different directions after frequency
warping in the optimally interpolated 3-D WGM in three differ-
ent cases: (a) a single warping with � = �0:252902, (b) a
two-stage multiwarping (�1 = 0:275389, �2 = �0:577291,
D1 = 2:48579, D2 = 0:852843), and (c) a frequency-domain
warping.

There are various techniques to find an optimal value for the warp-
ing coefficent � [6]. We decided to minimize the maximal er-
ror. By this method we obtained the value � = �0:252902, and
the resulting RFEs are presented in Fig. 3(a). The maximal er-
ror with this technique is 3.8% in the frequency range [0,0.25].
Please note that the warping requires a resampling operation by
factor D = (1 � �)=(1 + �) to compensate for the warping at
low frequencies which is undesirable. In earlier studies [10, 6] the
resampling has been performed after warping, but in this case a
more accurate result was achieved when the resampling was done
before warping.

The error can be still reduced by applying the multiwarping
technique in which multiple signal resampling and frequency warp-
ing operations are cascaded [12, 13]. By using multiwarping which
contains two warpings and two signal resamplings, a maximal er-
ror of 2.0% is achieved. The corresponding curves are given in
Fig. 3(b).

5.2. Frequency warping in the frequency domain

Warping in the frequency domain is conducted by non-uniform re-
sampling of the Fourier transformed signal [14], [15](see page 13).
In this case the resampling intervals are determined by the relative
wave propagation speed curves. The applied warping function cor-
responds to the average of RFEs shown in Fig. 1(b) thus minimiz-
ing the maximal error. This resulting RFE is illustrated in Fig. 3(c).
Using this technique the maximal error is reduced to 0.78%.

6. SIMULATION EXAMPLE OF A CUBE

As an example an ideal cube was simulated. The mesh consisted
of 8 � 8 � 8 = 512 nodes and the walls had a reflection coeffi-
cient �1. An impulse excitation was located near one corner, and
the receiver was at the opposite one. In the simulation, 3298 time
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Fig. 4. A cubic space is simulated and a transfer function is calcu-
lated (a) with the original rectangular mesh, (b) with the optimally
interpolated mesh applying multiwarping, and (c) with the opti-
mally interpolated mesh using warping in the frequency domain.
The solid line represents the simulation result and the dashed line
is the analytical solution.

steps were calculated and the magnitude response was computed
by Fourier transforming the obtained impulse response. Figure
4 illustrates the result in three different cases. In all the figures
the dashed line stands for the analytically solved magnitude re-
sponse. In the original rectangular mesh, represented in Fig. 4(a),
some of the modes are at correct locations and some others are
too low. Both the optimally interpolated mesh with multiwarping
(Fig. 4(b)) and the optimally interpolated mesh with warping in the
frequency domain (Fig. 4(c)) enhance the situation remarkably. It
is easy to see that the most accurate result is obtained when the
warping is performed in the frequency domain as already shown
in Section 5.2. In all the simulations the obtained RFEs are in
good agreement with the curves shown in Figs. 1(a) and 3(b,c),
respectively.

7. CONCLUSIONS

An optimally interpolated 3-D digital waveguide mesh with rect-
angular structure was presented. By applying the interpolation,
nearly direction independent wave propagation characteristics are
obtained. The remaining dispersion can be reduced by frequency
warping, which can be performed either in the time domain or in
the frequency domain. The least relative frequency error of 0:78%
is obtained when the warping is done in the frequency domain.
The new method improves the frequency accuracy of the original
3-D mesh remarkably.
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