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ABSTRACT 
 
 In impulsive noise environment, most learning 
algorithms are encountered difficulty in distinguishing the 
nature of large error signal, whether caused by the impulse 
noise or model error. Consequently, they suffer from large 
misadjustment or otherwise slow convergence. A new 
nonlinear RLS (VFF-NRLS) adaptive algorithm with 
variable forgetting factor for FIR filter is introduced. In this 
algorithm, the autocorrelations of non-zero lags, which is 
insensitive to white noise, is used to control forgetting 
factor of the nonlinear RLS. This scheme makes the 
algorithm have fast tracking capability and small 
misadjustment. By experimental results, it is shown that the 
new algorithm can outperform other RLS algorithms. 
 

1. INTRODUCTION 
 
 Recursive least squares (RLS) algorithms have been 
used extensively in adaptive filtering, self-tuning control 
systems and system identification [1]. The standard RLS is 
well known for its good convergence property and small 
mean square error when the system is time-invariant. 
However RLS is shown not effective for tracking 
time-varying parameters because it is difficult to find a 
suitable forgetting factor to provide good tracking in 
dealing with large model variations. 
 Many efforts have been directed to the development of 
modified RLS algorithm. To maintain the tracking 
capability of RLS algorithm, modification on the inverse of 
the covariance matrix are proposed [2-3]. In this scheme, an 
additional term is added to the inverse that results in 
improving the tracking and giving good noise immunity. 
Others try to control the forgetting factor or the effective 
data window length [4-5]. This approach can maintain the 
form of the RLS algorithm derived from the least square 
minimization. However, the control of the forgetting factor 
in most of these algorithms is sensitive to disturbance and 
noise. 
 Most of the noise sources in many practical 
environments are found to be non-Gaussian in nature [6-7]. 
Due to some natural and man-made sources, they may 
exhibit impulsive characteristics. Identification of time 
varying system in impulsive noise could impose difficulty 
to most of adaptive systems as their performances may 
seriously be deteriorated. The reason is due to the fact that 
the adaptive filters are easily confused by the errors caused 
by the impulse and model variations. It is shown in the 

literature that the performance of RLS will be degraded in 
the presence of impulse noise [8]. The performance of the 
standard RLS algorithm can be improved by using a 
nonlinear function in the weight update to limit the 
estimation error. 

In this paper, we introduce a new nonlinear RLS 
algorithm with variable forgetting factor (VFF) of which 
the control of the forgetting factor is much less sensitive to 
impulse noise but can response well to model variations. 
Unlike other algorithms, the control is based on the 
autocorrelation values of the error of nonzero lags and 
constrained by a sigmoidal function. This approach can 
reduce the affect of the impulse noise and make the change 
of the forgetting factor directly response to the model 
variations. Based on the mean square analysis, a control 
scheme is devised. In this paper, we apply the new VFF 
scheme to the nonlinear RLS in [8]. Experimental results 
are presented to illustrate the performance of the new 
adaptive filter and other VFF RLS are compared. 
 

2. NONLINEAR RLS ALGORITHM 
 
 In the linear RLS, the update of the weight vector, 
W(n), is described as 

)()()()1( nennn N+=+ WW     (1) 

where the error signal, )(ne , and the Kalman gain vector, 
k(n), are given by 
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where [ ]TNnxnxn )1(),...,()( +−=X  is the data vector of 

length N, ]1,0(∈λ  is the forgetting factor, and P(n) is the 

inverse of the correlation matrix given by 
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where δ  is the initial value. In (2a), the desired signal d(n) 
for system identification can be written as  

 )()()( 0 nnnd T η+= XW     (4) 

where 0W  is the desired weight vector. In (4), the noise 

component )(nη  is assumed to be independent and 

identically distributed (i.i.d.) with zero mean and variance 



2
ησ . The noise model is a mixture density with the pdf 

defined as 
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where A is the impulse index, )(xf m  is taken to be a 

Gaussian pdf with zero mean and variance given by 

 1,0,222 =+= migm σσσ     (6) 

where 2
gσ  and 2

iσ are the variances of the nominal 

Gaussian component and the impulsive component, 
respectively. The ratio of the power in the nominal 
Gaussian component to that in the impulse component is 

defined as 22 / ig Aσσ=Γ . The variance 2
ησ  is given by 

 2
1

2
0

2 )1( σσση AA +−= .    (7) 

 The nonlinear RLS of interest has the weight vector 
update described by  
 { })()()()1( negnnn N+=+ WW    (8) 

where { }xg  is an odd-symmetric error-saturation 

nonlinear function. The nonlinear function is the 
generalized clipping function defined by [8] 
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where r is the clipping parameter between zero and one. 
The attraction of using this nonlinearity is its simplicity. 
 In next section, we will discuss about a strategy to 
control the forgetting factor in (2c) to make the algorithm 
functioning well in time varying environments. 
 

3. VARIABLE FORGETTING FACTOR 
 
 The general strategy for the control of variable 
forgetting factor (VFF) can be described as follows. Large 
forgetting factor (effectively large memory of data) is used 
when the learning is in the steady state and also there is no 
obvious model variation, while small one (to fade away the 
very old data) is applied when the model error is large. In 
time varying environment, the control should be able to 
sense the change of the model and reduce the disturbance 
from the noise. 
 In the environment with impulsive noise, at the incident 
of large error signal, there could be two possibilities. The 
error is due to either large model variation or impulse noise. 
In case the former one occurred, the forgetting factor should 
be adjusted to make the filter response to the change; 
otherwise, the forgetting factor should remain large to 
neglect the effect of the impulse noise. 
 Before we discuss about the control scheme, let us 
observe how the value of the forgetting factor affects the 
mean square error. 

3.1 Mean square error and forgetting factor 
 
 For the sake of brevity, we state only the mean square 
error of the standard RLS algorithm without the detail of 
the derivation. The mean square error is defined as 

)}({)( 22 neEne =σ  For standard RLS and sufficiently large 
n, the mean square error is recursively given by 
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 The mean square error is the most relevant objective to 
select the forgetting factor. One way is to find the forgetting 

factor to minimize )1(2 +neσ  in (10). Let 22 /)( ησσ ns e=  

be the ratio between the mean square error at the n-th 
iteration and the noise variance. For a given ratio s, we can 

find an optimum λ  to minimize )1(2 +neσ . To show the 

relation between the mean square error and forgetting factor 
for a given ratio s, we plot the value of the expression on 
the right hand side of (10) versus against λ  for s=1.1, 2, 4, 

6 with 12 =ησ  and N=9 in Fig.1. It is observed that for 

large ratios, the smaller the forgetting factor, the smaller is 
the mean square error. On the other hand, for small ratio 
(s<4), the larger the forgetting factor, the smaller is the 
mean square error. Hence when there is large model error, 
we should set the forgetting factor to the permissible 
minimum value minλ (when minλ  is too small, there will 

be nearly zero memory). Based on the concept of 
exponential time constant, we can express )/1exp( 0τλ −= , 

where 0τ  is the effective time constant roughly related to 

data memory length. It is recommended to set minλ =0.6 at 

which 0τ =2. 
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Fig. 1. Plot of )1(2 +neσ  versus λ  for different ratios s 



 In order to avoid the disturbance by the impulse noise, 
we propose to use the autocorrelations of nonzero lags to 
measure the model error and control the forgetting factor 
for those model errors not very large. 
 
3.2 Control scheme for forgetting factor 
 
 Based on the previous discussion about the relation 
between the mean square error and the forgetting factor, we 
introduce a control scheme for the forgetting factor. The 
scheme is basically composed of two parts. When the error 
signal is very large, we set the forgetting factor to minλ ; 

otherwise the forgetting factor is governed by a sigmoidal 
function as given in (10) 
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In (10) the modified autocorrelation )(nRee  is defined as 
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where T is the length of the short-time window and the lags 
in the autocorrelations are nonzero. 
 To define the large error in the scheme, we will use 
the modified autocorrelation )(nRee  to measure against its 

average )(nRav . Whenever )(nRee is larger than four 

times of the average )1( −nRav , the forgetting factor is set 

equal to minλ . The average is calculated recursively by 

)()1()1()( nRnRnR eeavav ββ −+−=  (13) 
Considering independent noise with short correlation 

lag, the autocorrelation )(nRee  will not be so affected by 

the noise if the lags in (11) are larger than the correlation 
lag of the noise. In other words, )(nRee  is a term suitable 

for the tracking of the change in the time varying model. In 
our experiments, we consider only white noise. Hence, we 
set 11 =τ  and 22 =τ . The window length T in the 
correlation is not necessary too large and T=5 is sufficient 
to provide satisfactory performance. 

 
4. EXPERIMENTAL RESULTS 

 
Experiments on system identification are carried out to 

evaluate the performance of the proposed nonlinear RLS 
algorithm. The new algorithm is denoted by VFF-NRLS. 
Two other algorithms as described in [2] and [4] are 
compared and they are respectively denoted by SPRLS and 
FKY. The standard RLS with VFF will be denoted by 
VFF-RLS. 

In the experiments, the system is time varying which is 
switched between  
 { }0.4,0.2-0.8,0.6,-.6,-0.8,1,0.2,-0.4,00 =W  

and  { }0.8,1-0.4,0.6,-,-0.4,0.2,1,-0.8,0.61 =W  

at every 200 iterations. The initial value δ  is set equal to 1. 
Two mixture noise models, { 1.0=A , 1.0=Γ } and 

{A=0.01, Γ =1}, are considered. The learning curves and 
simulation results are averaged over 200 runs. In the control 
of forgetting factor, we set 1τ =1, 2τ =2, and the window 

length T=5. The clipper function parameter r is set equal to 1. 
The threshold 0T  in (9) is given by 

 )(~ 2'
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where the variance of the error is computed by 

 )()1()(~)1(~ 222 nenn ee ασασ −+=+    (15) 

The smoothing parameter α  is set equal to 0.9 and the 

parameter '
0T  is fixed to 1. 

 In Fig.2, we plotted the learning curves on the mean 
square model error of VFF-NRLS for SNR=19.63dB. The 
smoothing parameter β  in (13) is set equal to 0.995. The 

mean square model error is defined as 
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Fig. 2.Mean square convergence of VFF-NRLS in mixture 

noise for two different model parameters 
 
 The results show that the VFF-NRLS algorithm can 
provide a robust tracking performance in different mixture 
noise and give smaller misadjustment for large A. 
 In Fig.3, we plotted )(nRee  to illustrate the tracking 

of the model error of using the modified autocorrelations in 
mixture noise. The results verify that )(nRee  is able to 

identify the model errors and is insensitive to the disturbance 
of the impulsive noise. Especially the )(nRee  can follow 

along with the large model errors quite well. 
In Fig.4, we compare the mean square model error of 

VFF-NRLS with SPRLS and FKY for { 1.0=A , 1.0=Γ }. 
The results show that the new algorithm has better tracking 
capability and much smaller misadjustment than other 
variable forgetting factor RLS. In this experiment, all the 



VFF algorithms are applied to the nonlinear RLS algorithm. 
On the other hand, in Fig.5, we compare the new variable 
forgetting factor algorithm and other two VFF algorithms on 
the standard RLS in the same mixture noise. Comparing the 
results in Fig.4 to that of Fig.5, it is observed that the 
nonlinear RLS can yield much smaller model error than the 
standard RLS in the steady state, while the standard RLS can 
converge slightly faster than the nonlinear RLS algorithm. 
 

5. CONCLUSIONS 
 

A new variable forgetting factor scheme for RLS 
algorithm in impulsive noise is presented. The scheme is 
basically derived from the minimization of the mean square 
error. Using autocorrelations of nonzero lags is shown 
effective to track model. Simulation results show that the 
new algorithm yields faster convergence and much smaller 
steady state mean square error than the existing variable 
forgetting factor RLS algorithms. 
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Fig. 3. Plot of )(nRee  for two mixture noise models 
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Fig. 4 Performance comparison of VFF-NRLS, SPRLS and 

FKY algorithms 
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Fig. 5. Performance comparison of VFF-RLS, SPRLS and 

FKY algorithms 


