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ABSTRACT

We consider the problem of estimating continuous-time au-
toregressive (CAR) processes from discrete-time noisy ob-
servations. This can be done within a Bayesian framework
using Markov chain Monte Carlo (MCMC) methods. Ex-
isting methods include the standard random walk Metropo-
lis algorithm. On the other hand, least-squares (LS) algo-
rithms exist where derivatives are approximated by di�er-
ences and parameter estimation is done in a least-squares
manner. In this paper, we incorporate the LS estimation
into the MCMC framework to develop a new MCMC algo-
rithm. This new algorithm is combined with the standard
Metropolis algorithm and is found to improve performance
compared to the standard MCMC algorithm. Simulation
results are presented to support our �ndings.

1. INTRODUCTION

The discrete-time AR model is widely used in a broad range
of signal processing applications such as audio modelling [4].
However, most physical systems or phenomena are contin-
uous in time by nature. One example is speech and audio
signals. Another example is in astrophysics and modelling
sunspot data [9]. Such data can be modelled by continuous-
time stochastic processes. CAR processes are a subclass of
continuous-time processes and can be used in place of the
discrete AR processes.

On the other hand, the advent of digital computers
means that analysis of systems is done with discretized data
obtained by sampling the underlying continuous-time pro-
cesses. For example, audio is stored in a computer in digital
form obtained through an analog to digital (ADC) conver-
sion of the source signal. This has lead to the greater pop-
ularity of discrete models compared to continuous models.
Here we model data using continuous-time autoregressions.
A continuous-time model becomes necessary for the case of
irregularly sampled data.

In this paper, we further develop methods for estimat-
ing continuous-time AR processes from discrete samples ob-
served in noise using a Bayesian approach. In section 2, we
give a brief review of existing methods and then present our
new method in section 3. Simulation results are presented
in section 4. Conclusions appear in section 5.
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2. THE CAR PROCESS AND PREVIOUS

RESULTS

A p
th order CAR model can be written as [6]

x
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(t) + �p�1x
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where x(j) denotes the jth derivative of x(t), and �(t) is a
continuous time \white noise" process with spectral density
�
2
� .
For stationarity it is assumed that the roots of the char-

acteristic equation
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have negative real parts.

This model has a state space representation

d

dt
x(t) = Ax(t) +B�(t) (3)

where the state of the system is given by
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The matrices A and B are given in [6]. The solution of
the system is given by

x(t) = e
At
x(0) +

tZ
0

e
A(t��)

B�(� )d� (5)

The process can be put in discrete-time state space form
as follows

x(tn) = Fnx(tn�1) + e(tn) (6)

The state transition matrix is given by

Fn = e
A(tn�tn�1) (7)

This is a matrix exponential and can be evaluated using
the eigenvalues and eigenvectors of the matrix A [6]. The
covariance matrix �en of the prediction error e(tn) is also
given in [6].



Unfortunately, we cannot directly observe the state of
the system. Instead, we observe a `noisy' version of it given
by

y(tn) = Cx(tn) + v(tn) (8)

where y(tn) are the discrete observations of the CAR pro-
cess corrupted by white Gaussian noise with variance �

2
v.

Again, matrix C is given in [6]. Given observations at N
arbitrary points

y ,
�
y(t1); y(t2); : : : ; y(tN)

�
(9)

which may be equally or unequally spaced, we are faced
with the problem of estimating the CAR process parameters
� , (a; �e; �v) and the true signal at these instants. Below
we review existing methods that will form the basis of our
new method.

2.1. ML estimation using the Kalman �lter

Jones [6] evaluates the exact likelihood function by applying
the Kalman �lter [5] to equations (6) and (8). Let x̂(tn�1)
denote the optimal estimator of x(tn�1), based on the ob-
servations up to and including y(tn�1). Let Ptn�1

denote
the covariance matrix of the estimation error.

Given x̂(tn�1) and Ptn�1
, the optimal estimator of x(tn)

and the covariance matrix of the estimation error are given
by the prediction equations:

x̂(tnjn�1) = Fnx̂(tn�1) (10)
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Given the new observation y(tn), the updating equations are

x̂(tn) = x̂(tnjn�1) +Ktn(y(tn)� Cx̂(tnjn�1)) (12)

Ptn = (I �KtnC)Ptnjn�1
(13)
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The Kalman �lter output is an optimal state estima-
tor given the data up to that time instant. The Kalman
smoother [5] is an optimal state estimator given the whole
data set. The likelihood is then evaluated via the prediction
error decomposition [5]. Jones [6] then performs maximum-
likelihood (ML) estimation of the parameters by searching
for the maximum of the likelihood function. However, the
likelihood is multimodal and this method will not always
lead to the true maximum.

2.2. Least-Squares Parameter Estimation

S�oderstr�om et al [1] propose a LS approach for estimating
the model parameters from discrete data. They approxi-
mate the derivatives with �nite di�erences and the problem
is transformed to a linear regression. For example, the kth

derivative is approximated by

x
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where h is the sampling interval and �k;j are some weights.

The natural conditions on the weights �k;j to ensure

that Dk
x(t) = x

(k)(t) +O(h) are given by [1]
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Standard derivative approximations such as the forward
or backward delta operator (Æ or Æb) will give a biased es-
timate [1]. In [1] additional constraints are imposed on the
weights to give an asymptotically unbiased solution. In [2]
the more realistic case of noisy observations is addressed.

2.3. Existing Bayesian Methods

The estimation of the CAR parameters can be done by us-
ing a Bayesian framework [7]. The posterior probability
distribution of the joint parameter set is given by Bayes
rule:

p(�jy) =
p(yj�)p(�)

p(y)
(18)

/ p(yj�)p(�) (19)

Hence, the posterior is proportional to the likelihood times
the prior. The likelihood is evaluated by the Kalman �l-
ter [5]. Di�erent types of priors can be used for the prior
density [8]. They will generally be much broader than
the likelihood re
ecting our prior ignorance of the parame-
ters. The minimum mean-squared error (MMSE) estimate
of the parameters is the mean of the posterior probabil-
ity density function. The posterior density is not math-
ematically tractable, hence analytical methods cannot be
employed. MCMC methods have to be used for simulat-
ing samples from the posterior density, for example the
Metropolis-Hastings algorithm [3].

Suppose �i is the ith sample of the MCMC chain. It is
proposed that the next variate in the random sequence be
�
� which is given by

�
�
� T (��j�i) (20)

where T (��j�i) is the transition probability of �� given �
i,

also known as the proposal density.
The probability of accepting �

� instead of the current
sample is given by the acceptance function:
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where

Q(�i; ��) =
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Li [7] uses a random walk proposal density. The pro-
posal density is a normal distribution centered at the cur-
rent sample. Hence, it is symmetrical about the origin so
the acceptance probability (22) is given by

Q(�
i
; �

�
) =

p(��jy)

p(�ijy)
(23)

However, it turns out that the random walk algorithm
is a fairly basic one with slow convergence and dependent
on the starting position. It works well for low model orders,
but performance is compromised for a model order higher
than 2.



3. EFFICIENT MCMC ALGORITHM

Our �rst new MCMC algorithm uses a proposal density
for the model parameters which is a Gaussian centered at
the LS estimate1 aiLS. Its covariance �

i
LS is also given by

the LS estimate. The proposal density for the process and
noise variances is still a random walk. Suppose �i is the ith

element of the chain. Hence, it is proposed that the next
variate in the random sequence be �� which is given by

�
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i
LS ;�

i
LS)N(�
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2
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2
2) (24)

where N(�;�2) is a Gaussian distribution with mean � and
covariance matrix �2.

This proposal will start much nearer the true value of
the parameters, hence it will have a much smaller burn in.
However it will tend to have a lower acceptance ratio, with
fewer samples being accepted. When samples are accepted,
moves tend to be greater in magnitude. However, as the
proposed samples are drawn around the LS estimate, any
bias or inaccuracy in the LS estimate will be detrimental to
the MCMC chain. Hence, this proposal will not normally
be adequate on its own.

Our second new algorithm involves a proposal that com-
bines the two proposal densities so as to have a few succes-
sive samples drawn from the random walk proposal and
then use the LS proposal and so on. The random walk pro-
posal will explore the vicinity of the current sample and
the LS proposal will possibly take us to regions of the dis-
tribution that the random walk proposal might not have
explored. Simulation results are presented in the next sec-
tion. MCMC chains from the same dataset are produced
by using the random walk and LS proposals on their own
plus the combined proposal.

4. SIMULATION RESULTS

Data from a 4th order CAR model were generated and ob-
served in noise. The process variance was �2e = 1 and the
noise variance was �2v = 0:22. The poles of the CAR pro-
cess were located at 2�(�0:01�0:2j) and 2�(�0:01�0:4j).
500 samples of the process were observed with a sampling
interval h = 0:1. For the case of the combined proposal, 10
samples were generated using the random walk proposal,
then 1 sample using the LS proposal and so on. We used

at priors for the parameters.

Figures (1-3) show plots of the MCMC chains using the
random walk, LS and combined proposal respectively. The
estimated values of the poles and the estimated process and
noise variances for each proposal are given in table 1. The
combined proposal gives slightly better estimates compared
to the other two. Figure 4 shows the noisy observations,
true data and estimated data. The estimate of the signal
is obtained by averaging out the Kalman smoother output
over all iterations. Hence it is the MMSE estimate of the
signal E(xjy). Figure 5 shows the autocorrelation function
of the three MCMC chains. The combined proposal has also
got better properties in terms of the correlation of successive
samples. The autocorrelation function for the combined
proposal drops faster than the other two.

1We used a modi�ed LS algorithm were estimates of the
derivatives up to order p�1 are taken from the Kalman smoother.

Proposal Pole 1 (=2�) Pole 2 (=2�) �e �v

RW �0:004 � 0:196j �0:007 � 0:401j 0:827 0:211

LS �0:003 � 0:196j �0:03 � 0:3924j 1:178 0:210

Comb. �0:005 � 0:197j �0:009 � 0:401j 0:895 0:209

Table 1: Comparative results using the 3 proposals
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Figure 1: MCMC chain using the random walk proposal
and estimates of the marginal posterior probabilities of the
parameters.
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Figure 2: MCMC chain using the LS proposal and estimates
of the marginal posterior probabilities of the parameters.
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Figure 3: MCMC chain using the combined proposal and
estimates of the marginal posterior probabilities of the pa-
rameters.
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Figure 4: Noisy, clean and estimate of data using MMSE
estimator E(xjy) for the combined proposal.
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Figure 5: Autocorrelation function of the MCMC chain for
the 3 proposals.

5. CONCLUSIONS

We have performed Bayesian inference of the CAR model
parameters from discrete noisy observations using an MCMC
method. Our new algorithm combined the basic random
walk Metropolis algorithm with LS estimation to give a
new eÆcient MCMC algorithm. Results are shown to be
superior than those of the standard Metropolis algorithm
or those of the Metropolis algorithm using a LS proposal.
Future work can include a model order selection for the
case of an unknown model order by using a reversible jump
sampler [10, 11].
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