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ABSTRACT
In this paper, we propose the novel application of a technique for
filter design that can accurately fit measured tuning curves for
the auditory fibres in the log-magnitude domain.  This method
provides pole-zero filters with guaranteed stability, and its log-
magnitude domain criterion allows tuning curves with very steep
slopes to be accurately modelled with an 8th to 10th order pole-
zero filter.  Thus, this technique can also be used to design a new
set of critical band filters with superior frequency domain
characteristics compared with the well-known gammatone filter
bank.  The filter bank designed using this technique has
applications in auditory-based speech and audio analysis.

1. INTRODUCTION
There has been considerable research devoted to modelling the
functional roles of peripheral auditory systems.  Although
computational auditory models have been shown in some cases
to outperform conventional signal processing techniques,
especially in noisy environments, adequate modelling of the
principal behaviour of the peripheral auditory systems is still a
difficult problem.

Many auditory models have been proposed previously and earlier
models have used transmission line representations to simulate
basilar membrane motion [1]-[8].  Gammatone filters were first
used by Flanagan [2] to model basilar membrane motion, and
were subsequently used by Patterson et al. [10] as a reasonably
accurate alternative for auditory filtering, and have since become
very popular.  Irino et al. [3] developed a time-varying analysis-
synthesis auditory filter bank called the gammachirp filter bank,
which they applied to noise suppression.  Lyon [8] introduced an
all-pole gammatone filter, which was derived by discarding zeros
from the gammatone filter.  These all-pole models allowed more
controlled behaviour of the tuning-curve tail, bandwidth,
asymmetry and centre-frequency shift.  The use of all-pole
gammatone filters has subsequently become popular, for example
Kubin and Kleijn [5] applied them to speech coding and Robert
and Eriksson [12] applied them to produce a non-linear, active
model of the auditory periphery.

Obtaining an all-pole gammatone digital filter from a gammatone
impulse response does not provide an accurate frequency domain
description of the tuning curves, particularly at the tails.  In this
paper, we present a technique for pole-zero digital filter design
[4][9] that overcomes this problem.  The criterion for filter
design is based on the minimization of the difference between the
log-magnitude of the measured tuning curve and pole-zero filter.
Critical band filters designed using this method can achieve high
frequency domain accuracy and computational efficiency.

Section 2 reviews the log-magnitude filter design technique.  Its
application to the modelling of auditory filters is presented in
section 3.

2. FILTER DESIGN BASED ON LOG-
AMPLITUDE MEASURE

A technique for designing IIR digital filters having an arbitrary
log-magnitude frequency response was proposed by Kobayashi
[4].  This technique was subsequently modified and applied to
encoding sine wave amplitudes in harmonic speech coding by
Malik and Holmes [9].  In the technique, a modelling error
criterion J is used which is the sum of squared differences, on a
logarithmic scale, between a given set of spectral amplitudes

)( krD ω  and the magnitude response of a rational function

)( kjeH ω  sampled at the same frequencies [4][9]:
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frequencies and )( krD ω , in the application described in section
3, is the auditory tuning curve (positive magnitude values)
obtained from direct measurement.  Also, )( kjeH ω  is the
frequency response of the auditory filter approximation, which
has the form
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where ia  and ib  are the filter parameters, P is the number of
poles, and Q is the number of zeroes.
The minimization of J with respect to the parameters ia  and ib
is a nonlinear problem whose solution would normally require
optimization techniques based on gradients.  To avoid the use of
optimization methods, we consider an iterative procedure
originally proposed in [4].  At the mth step, this iterative
linearization procedure selects m

ia  and m
ib to minimize the error
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where )( kD ω  is a complex-valued function whose magnitudes
are identical to the real valued data )( krD ω .  The phase of this
function can, in general, be specified without any constraint.  For
simplicity, we will assume )( kD ω to be minimum phase, being
uniquely obtained from the log-magnitude data sequence

)( krD ω  using real and complex cepstral coefficients [4].  The
weights
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are real, non-negative and even functions of the frequency kω ,

and depend only on the parameters 1−m
ia  and 1−m

ib from the
previous step.

The minimization of mJ , given in the form of equation (2.3),

with respect to the parameters m
ia  and m

ib , can now be
recognized as a linear weighted least squares problem.  Equation
(2.3) can be expanded to form [4][9]
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The uvth entries of the matrices A, B and C are given by
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with u, v = 1, 2, …, P+1.

Minimization of mJ with respect to the vectors of parameters
m
ia  and m

ib gives rise to a system of linear equations in these

unknowns and the minimum value mJmin  of mJ :
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The solution of equation (2.11) is used to update the weight
function in (2.4) and the process is then repeated.  The complete
algorithm converges to a sufficiently small error Jm within 2 to 3
iterations in all instances of its use to date.  The initial value of
the weight function )( k

mW ω  can simply be set to 1.

3. FITTING AUDITORY NERVE TUNING
CURVES

3.1 Fitting Auditory Gammatone Filters

The logarithmic scale of loudness perception of the human
auditory system motivates the application of the filter design
technique of section 2 to the approximation of gammatone filters.
In this section we apply the filter design technique to fit the well
known gammatone filter [2][3][8][10][13].  A gammatone is the
product of a rising polynomial, a decaying exponential function,
and a cosine wave.  Its continuous-time impulse response is
given by

)2cos()( )(21 φππ += −− tfeattg c
tfbERBN c , (3.1)

where N is the order of the filter, fc is the centre frequency,
ERB(fc) is the equivalent rectangular bandwidth of the auditory
filter, and a, b ∈  ℜ  are constants.  At moderate power levels [13],

cc ffERB 108.07.24)( += .  As an example, the filter parameters
N = 4, b = 1.019, fc = 1778.5 Hz and ERB(fc) = 217.7 Hz yield an
8th order gammatone filter with a centre frequency of 1778.7 Hz.

This 8th order gammatone filter has a closed-form Laplace
transform with an 8th order denominator and a 4th order
numerator [13].  To apply gammatone filters to digital audio and
speech processing, bilinear or impulse invariant transforms have
traditionally been applied to obtain IIR filters.  However, spectral
distortion will be introduced due to the nonlinear frequency
warping and possibly ‘aliasing’, and this will be particularly
severe near the Nyquist frequency, which is often well within the
audible range.  The numerator of the IIR filter will be 4th order,
regardless of the order of the prototype analogue filter.

To obtain a digital filter that provides an improved
approximation to the analogue frequency domain characteristics
of the gammatone filters, the filter design technique introduced in
section 2 is utilized.  The frequency response of this filter is
obtained by taking the Fourier transform of the time sequence of
the gammatone filter.  The magnitude of the frequency response
is then used to fit the data to a digital filter based on the log-
amplitude measure.

Different orders for the filter have been tested.  If a ‘perfect’
match of the amplitudes is required, the order of the denominator
should not be less than 8 while the order of the numerator can be
as low as 3.  With a slight sacrifice in accuracy, the filter
numerator and denominator orders can be chosen as 1 and 8
respectively.  The magnitude frequency response of the resulting
filter for the above example is shown in Fig. 1, together with the
magnitude response of the original gammatone filter.  From
Fig. 1, it is evident that the filter design technique provides an
excellent approximation to the original gammatone filter log-
magnitude frequency response, especially in the important range
around the centre frequency.  Small discrepancies arise at
extremely low and high frequencies, however these are not
significant since the magnitudes in these regions are 70 dB or
more below those at the centre frequency.  By contrast, digital
filters derived from the bilinear or impulse invariant transforms
incur severe distortion due to the zeros introduced at these points.
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Figure 1.  Magnitude responses of a gammatone filter
and its digital pole-zero approximation.

A comparison between the impulse responses obtained from the
original gammatone filter and its digital pole-zero approximation,
illustrated in figure 2, reveals a close similarity.  Thus, the digital
filter gives a good approximation to the gammatone impulse
response, despite the error minimization being in the log-
magnitude domain during the filter design.
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Figure 2.  Impulse responses of a gammatone filter and its
digital pole-zero approximation

Using the log-magnitude filter design technique, a 10th order all-
pole gammatone filter was also designed.  The all-pole filter
obtained was also found to provide an excellent approximation to
both the magnitude response and impulse response of the original
gammatone filter.  All-pole filters of this kind allow for low
complexity speech and audio processing and have the advantage
of being easily inverted.

3.2 Fitting Basilar Membrane Magnitude
Response

Rhode [11] obtained empirically the amplitude response at a
point along the basilar membrane corresponding to a
characteristic frequency of 7 kHz (see Figure 3).  In comparison
with gammatone filter magnitude responses, this amplitude

response has a very steep cut-off beyond the characteristic
frequency.  In the past, transmission line mathematical models
[1] have been developed to approximate the amplitude response
measured by Rhode.  We fit a pole-zero approximation to this
amplitude response using the method of section 2.  Samples of
the measured basilar membrane amplitude response were used as
the )( krD ω  in equations (2.1) and (2.3).  The best fit obtained
was provided by numerator and denominator orders of 6 and 8,
respectively.  The filter parameters in the transfer function
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were found to be:

-0.2372;b -0.5937,
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The frequency response of the fitted filter (3.2) is illustrated in
Fig. 3, and is compared with the original measured response from
Rhode [10].

103 104
-40

-30

-20

-10

0

10

20

30

Frequency (Hz)

dB

Rhode's Measurement
approximation by the filter

Figure 3.  Magnitude response of a basilar membrane
magnitude response [10] and its digital pole-zero filter
approximation.

This method can thus be applied to fit the measured
magnitude response at any point along the basilar membrane
without resorting to more complex models such as
transmission line techniques.  The basilar membrane
magnitude responses are the true auditory filters, and provide
far superior frequency domain characteristics than the
gammatone filters.

3.3 Fitting Auditory-Nerve Tuning Curves

Another application where the technique of section 2 can be used
is fitting the auditory tuning curves. Psychoacoustical tuning
curves can be obtained by increasing the masker level to the
point where a test tone at a given frequency becomes inaudible.
A set of tuning curves can normally be obtained using masking
thresholds [14], and the shapes of these masking curves are very
similar at different centre frequencies a Bark scale.  It is also



known that the auditory nerve tuning curves are sharper than the
basilar membrane magnitude response.

We choose to apply our technique to three auditory nerve
response curves obtained by Liberman [6] from cats raised in a
low-noise chamber.  The central frequencies of these curves are
inside the range 500 to 5000 Hz.  It appears that a filter of
numerator order 9 and denominator order 9 can fit each measured
curve using the technique introduced in section 2.  The frequency
responses of the filters are shown in Figure 4, together with the
original measured tuning curve from [6].  The assumed sampling
frequency is 16 kHz.

Testing of this algorithm on other measured tuning curves with
arbitrary sharpness also yields approximations with very low
spectral distortion.  Digital filters obtained directly from auditory
tuning curves have a wide variety of applications in speech and
audio processing.

102 103 104
-10

0

10

20

30

40

50

60

70

80

90

Frequency (Hz)

dB

Measurement
approximation

Figure 4.  Nerve tuning curves (dashed) and their fitting
filters (solid).

4. CONCLUSION
A novel auditory filter design technique was proposed in this
paper.  Auditory filters were obtained by minimizing the squared
difference, on a logarithmic scale, between the measured
amplitude of the nerve tuning curve and the magnitude response
of the digital filter.  The new filter design produces filters whose
magnitude and impulse responses are very close to the
gammatone magnitude and impulse responses, measured basilar
membrane magnitude responses and measured auditory nerve
tuning curves.  The filters obtained are IIR and are hence
computationally efficient.  Thus, this technique is highly suitable
for the design of auditory filters for speech and audio processing,
and provides a new paradigm for critical band auditory filter
design with superior frequency domain characteristics.
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