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ABSTRACT

In this paper, a new frequency domain approach
towards blind channel identi�cation for multirate com-
munication systems is described. Users are �rst sepa-
rated based on di�erent cyclic frequencies correspond-
ing to their respective symbol rates, thereby resulting
in a single-user (blind) identi�cation scenario. The al-
gorithm proposed in [3] is then used to estimate the
channels for each rate. Computer simulations demon-
strate the e�ectiveness of our method.

1. INTRODUCTION

The primary challenge for 3rd generation wireless com-
munications systems is the provisioning of multimedia
services (voice, video and data) over the same network
infrastructure. Since the rates of such traÆc are inher-
ently di�erent, it leads to transceiver design for mul-
tirate communications, as distinct from the primar-
ily single-rate scenarios that dominate the literature.
For broadband access, Code Division Multiple Access
(CDMA) provides a 
exible approach to providing mul-
tirate services [1] - one of the �rst techniques for blind
channel estimation for multirate CDMA systems was
developed in [2]. In this work, we concentrate instead
on channel estimation for a generic multirate system
model that encompasses both narrowband and wide-
band signals; such models apply to the case of system
overlay where a new wideband service overlaps a legacy
narrowband system. Communication signals that are
(wide-sense) cyclostationary can be represented by an
equivalent single-input, multiple output (SIMO) linear
model under output oversampling and/or with multi-
ple receive antennas. It is known that in such cases,
it is possible to estimate the channel blindly with sec-
ond order statistics subject to suitable identi�ability
conditions [3]-[7]. Our method uses second order cyclic
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statistics to separate multirate users and subsequently
applies the approach in [3] for individual channel esti-
mation.

2. PROBLEM FORMULATION

A baseband multirate communication system can be
modeled as:

y(t) =

MX
i=1

1X
k=�1

si(k)hi(t� kTi) + w(t) (1)

where si(k)'s are mutually independent zero-mean i:i:d:
sequences with variance �2si ,M is the number of symbol
rates and w(t) is additive white noise. Note that we
assume only one user at any rate to underscore that
rate-based separation is the motivating principle behind
our approach.

We assume that the ratio between these rates sat-
is�es

T1
p1

=
T2
p2

= � � � =
TM
pM

= T (2)

where p1; p2; � � � ; pM are co-prime integers, and 1
T
is the

`basic' rate. Oversampling the received signal with a
factor � = T

L
yields

y(n�) =
MX
i=1

1X
k=�1

si(k)hi(n�� kTi) + w(n�) (3)

Denote P =
QM

i=1 pi, the least common multiple of
p1; p2; � � � ; pM and qi =

P
pi
, we obtain the discrete time

model from (3):

y(n) =

MX
i=1

1X
k=�1

si(k)hi(n� kLpi) + w(n); (4)

The problem addressed in this paper is the blind esti-
mation of hi(n)'s.



3. BLIND CHANNEL IDENTIFICATION

The algorithm proposed in this section exploits the �-
nite support property of the second order cyclic statis-
tics (SOCS). Since signals with di�erent cyclic periods
have di�erent support, evaluating the SOCS at specif-
ically chosen frequencies leads to separation of indi-
vidual users, i.e., rejection of multi-user interference,
leading to the familiar single user setting.

3.1. Cyclostationarities of Multirate Signals

Following the notations and procedures in [8], we �rst
brie
y introduce the second order cyclic statistics for
the multirate communication signals. The autocorre-
lation of noiseless received signal y(n) is given by

ry[n; n+m] = Efy(n)y�(n+m)g

=
PM

i=1 �
2
si

P1
k=�1 hi(n� kLpi)h

�
i (n+m� kLpi)

(5)
It is easy to verify that ry[n; n+m] is a periodic function
in n with fundamental period K = LP , its Fourier
expansion is

ry[n; n+m] =

K�1X
k=0

Rk�
y [m]ejkn� � = 2�=K (6)

where the cyclic autocorrelation function Rk�
y [m] is de-

�ned as

Rk�
y [m] =

K�1X
n=0

ry[n; n+m]e�jkn� (7)

The spectral correlation density of y[n] is de�ned as the
Fourier transform of Rk�

y [m]

Sk�y (f) =
X
m

Rk�
y [m]e�j2�fm (8)

The support set of these two functions is

U = fk�jk = 0; � � � ;K � 1g (9)

Denote by yi(n) =
P1

k=�1 si(k)hi(n�kLpi), the com-
ponent of y(n) due to rate i user. We see that yi(n)
is also cyclostationary and the support of Rk�

yi
[m] and

Sk�yi (f) is

Ui = fkqi� = 2�k=Lpijk = 0; � � � ; Lpi � 1g (10)

where obviously Ui � U .

3.2. The Algorithm

Let � = k� for brevity; it is easy to verify from (7) and
(8) that

R�
y (m) =

MX
i=1

R�
yi
(m); S�y (f) =

MX
i=1

S�yi(f) (11)

Hence for � 2 ~Ui = fxjx 2 Ui; x 62 [j 6=iUjg,

S�y (f) = S�yi(f) (12)

since all other signal components' contribution toR�
y (m)

is identically zero.
Thus we reach the conclusion that when operating

on the set ~Ui, we are actually dealing with single rate
systems from the viewpoint of cyclostationarity. In the
following, we therefore consider the signal rate case [3]
only.

Evaluate the spectral correlation density of y(n) at
� 2 ~Ui

S�y (f) = S�yi(f) = �2siHi(e
j(2�f��))H�

i (e
j2�f ) (13)

where Hi(e
j2�f ) is the Fourier transform of hi(n). In

Z-domain, the corresponding formula of (13) is

S�y (z) = S�yi(z) = �2siHi(ze
�j�)H�

i (1=z
�) (14)

If there are at least two elements in the set ~Ui, choose
� = (�1; �2) 2 ~Ui, we can then obtain the following
equation:

S�1y (z)Hi(ze
�j�2) = S�2y (z)Hi(ze

�j�1) (15)

According to (8), (15) is equivalent to the following
matrix form

Ry(�)hi = 0 (16)

where hi = [hi(0) � � �hi(Ni)]
T , Ni is the order of chan-

nel hi(n); Ry(�) = R1
y(�)�R2

y(�) with

R
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666666664
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In the presence of noise, the least square optimization
criterion

hi = arg min
khik=1

kRy(�) � hik
2 (17)

leads to the �nal solution as the right singular vector
associated with the minimum singular value of matrix
Ry(�). Similarly, we can estimate other user's channels
at di�erent rates.

When there are several choices for � in ~Ui, We ex-
pect better performance with these di�erent �s com-
bined. Speci�cally, for a total of n choices (�

l
; l =

1 � � �n) in ~Ui, forming the matrix

Ry = [RT
y (�1) � � �R

T
y (�n)]

T (18)

we can replace (16) with

Ryhi = 0 (19)

3.3. Identi�ability

It is clear that to determine the channels with our
method, two requirements need to be satis�ed:

1. User separatability

2. Identi�ablity for single rate, single user systems

The second condition has been well established [3],
therefore we have the following statement.

Theorem 1 hi's can be uniquely determined from (17)
(up to some scalar) if and only if

1. for the user at each rate, there exist at least two
elements �1 and �2 satisfying

�1; �2 2 ~Ui; ~Ui = fxjx 2 Ui; x 62 [j 6=iUjg

2. none of the transfer function Hi(Z)'s has uni-
formly 2�

Lpi
-spaced zeros

Note that the �rst condition can be easily met by chang-
ing the value of L.

4. SIMULATIONS

A dual rate system with p1 = 2, p2 = 3 was con-
sidered for performance assessment. Choose L = 2,
thus K = LP = 12. According to (9) and (10), U =
f0; �6 ;

2�
6 ; � � � ;

11�
6 g, U1 = f0; �2 ; �;

3�
2 g and U2 = f0; �3 ;

2�
3 ;

� � � ; 5�3 g. Since U1 \ U2 = f0; �g, ~U1 = f�2 ;
3�
2 g and

~U2 = f�3 ;
2�
3 ;

4�
3 ;

5�
3 g. Hence with � = (�2 ;

3�
2 ), we can

identify h1. Similarly, h2 can be estimated with any
one (or combination) of the 6 possible � s determined

by ~U2, namely (�3 ;
2�
3 ), (

�
3 ;

4�
3 ), (

�
3 ;

5�
3 ), (

2�
3 ;

4�
3 ), (

2�
3 ;

5�
3 )

and ( 4�3 ;
5�
3 ).

The channels were generated from the two-ray mul-
tipath propagation model

hi(t) = �1pi(t� 
1Ti) + �2pi(t� 
2Ti) i = 1; 2 (20)

where �1; �2 are zero-mean complex Gaussian random
variables with unit variance in each component (real
and imaginary). The path delays parameters 
1; 
2 are
random variables uniformly distributed on [�1 1]. pi(t)
is the raised-cosine pulse shaping function with roll-o�
factor 0.5 and time limited to 4Ti. The same set of �l; 
l
(l = 1; 2) parameters were used for both channels.

100 Monte Carlo runs were conducted to compute
normalized root mean square error (NRMSE), the per-
formance measure which is de�ned as:

NRMSE =
1

khk

vuut 1

J

JX
j=1

kĥj � hk2 (21)

where ĥj is the jth estimate of vector h. Cyclic auto-
correlation functions are obtained from the observation
through

R�
y [m] =

1

N �m

N�mX
k=1

y[k]y�[k +m]e�jk� (22)

The number of symbols used for rate 1 and rate 2 are
4500 and 3000 respectively. The e�ect of white Gaus-
sian noise and multirate interference on the algorithm
behaviors was investigated separately. Fig. 1 and 2 are
the respective plots of NRMSE versus SIR and SNR
for rate 1 user. It is easy to see that the algorithm
combats both noise and multirate interference success-
fully. For rate 2 user, performance with every � pair
and their full combination was tested separately. The
results are shown in Figs. 3 and 4, from which we
can conclude that the relative performance of the 6 in-
dividual � pairs varies as a function of SIR/SNR. In
the absence of an a-priori choice of �, combination of
more (or all) pairs may be utilized. Our extensive sim-
ulations showed that generally the more � pairs used,
the better the performance at the cost of additional
computational complexity arising from SVD on larger
matrix.
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Figure 1: NRMSE versus SIR: rate 1 user
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Figure 2: NRMSE versus SNR: rate 1 user, SIR=5dB

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

SIR (dB)

N
R

M
S

E

(Beta1, Beta2) = (Pi/3, 5Pi/3) 

(Beta1, Beta2) = (Pi/3, 2Pi/3) 

(Beta1, Beta2) = (4Pi/3, 5Pi/3) 

(Beta1, Beta2) = (Pi/3, 4Pi/3) 
(Beta1, Beta2) = (2Pi/3, 4Pi/3) 

Combination of all pairs 

(Beta1, Beta2) = (2Pi/3, 5Pi/3) 

Figure 3: NRMSE versus SIR: rate 2 user
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Figure 4: NRMSE versus SNR: rate 2 user, SIR=5dB


