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ABSTRACT 

 
Presented here is MPEG-2 AAC LC Profile encoder 
software for an Intel Pentium III processor. MDCT and 
quantization processing are accelerated by the use of SIMD 
instructions. Psycho-acoustic analysis in the MDCT 
domain makes the use of FFTs unnecessary. Better sound 
quality is provided by greater efficiency in quantization 
processing and Huffman coding. All of this results in 
high-quality and processor-efficient implementation of an 
MPEG-2 AAC encoder. Sound quality achieved at 96 
kbps/stereo is significantly better than that of MP3 at the 
same bitrate. The encoder works 13 times faster than 
realtime for stereo encoding on an 800MHz Pentium III 
processor. 
 

1. INTRODUCTION 
 
While MPEG-1/Audio Layer III (MP3) [1] has widely been 
used as a high quality audio coding algorithm for portable 
audio devices, PC jukebox software, and Internet music 
distribution systems, it is now being replaced by MPEG-2 
Advanced Audio Coding (AAC) [2]. AAC can encode an 
audio signal of CD quality at 48~64 kbps/ch, a bitrate 30% 
lower than that of MP3. In the next few years, a wide range 
of AAC products, including portable audio devices and PC 
jukebox software, are expected to appear on the market. 
 In most cases, PC encoder software is currently attached 
to such products, and customers demand that it provides 
both high sound quality and fast encoding. In general, these 
two demands require a trade-off: better sound quality 
usually results in slower encoding. While this problem 
might be overcome with sufficiently detailed information 
regarding encoder implementation, the AAC standard 
document [2] describes only decoding procedures and 
bitstream format; it says almost nothing about high-quality, 
processor-efficient implementations, the performance of an 
encoder strongly depends on its manner of the 
implementation. 
 We have developed the necessary techniques for 
high-quality, processor-efficient implementation and have 
succeeded in developing high-quality, processor-efficient 
encoder software for use on an Intel Pentium III processor. 
This paper describes the performance of our AAC encoder 
and the techniques we have employed to achieve high 
performance. 
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Figure 1: Block diagram of AAC LC profile encoder. 

 
 

2. AAC ENCODING ALGORITHM 
 

Three coding modes can be used with AAC: Main profile, 
Low Complexity (LC) profile, and Scaleable Sampling 
Rate (SSR) profile. Our newly developed encoder is 
designed to use the LC profile because it has been adopted 
for use in Japanese digital TV and currently seems to be the 
most widely used of the three in audio applications.  

Figure 1 shows the components of an AAC LC profile 
encoder. An MDCT (Modified Discrete Cosine Transform) 
[3] block transforms an input audio signal into MDCT 
coefficients, which represent a frequency spectrum. The 
MDCT coefficients are quantized in the quantization block 
after redundancies have been removed in the TNS 
(Temporal Noise Shaping) block and the Stereo coding 
block. The psycho-acoustic analysis block controls the 
quantization step to minimize audible quantization error. 
The quantized MDCT coefficients are then Huffman coded 
and multiplexed to the bitstream. 

Though one implementation example of an AAC encoder 
software is provided by ISO/IEC[2], its performance is 
insufficient in terms of both sound quality and encoding 
speed. It works over eight times slower than real-time for 
encoding (Pentium III 800 MHz, 44.1 kHz, 96 kbps/stereo), 
and its sound quality is generally worse than MP3 at the 
same bitrate. We have found methods, applicable to generic 
DSPs and microprocessors, for improving both encoding 
speed and sound quality (see Section 3). Further, we have 
introduced the use of SIMD (Single Instruction 
stream-Multiple Data streams) instructions to increase 
encoding speed even more (see Section 4). 



 

 

 
3. QUALITY AND SPEED ENHANCEMENT 

 
This section describes three methods we have employed in 
our encoder software to improve encoding speed and sound 
quality. These methods are applicable to implementation on 
generic DSPs and microprocessors. 
 
3.1. Psycho-acoustic analysis on MDCT coefficients 
 
In conventional encoder implementations [1],[2], the input 
PCM signal is transformed by FFT (Fast Fourier 
Transform), and psycho-acoustic analyses, such as masking 
calculations, are performed on the FFT coefficients 
[1],[2],[4]. We have found, however, that the 2048-point 
MDCT employed in AAC has sufficient frequency 
resolution for psycho-acoustic analysis and is able to 
replace the 2048-point FFT without any degradation in 
sound quality. For that reason, we have omitted the 
2048-point FFT and utilized existing MDCT coefficients, 
which are generated in the MDCT block, for the 
psycho-acoustic analysis.  

In the MDCT coefficients, the phase information of the 
input PCM signal which is utilized in conventional FFT 
based psycho-acoustic analysis [1],[2] is lost. We have 
modified the conventional psycho-acoustic analysis 
algorithm [4], which is performed on FFT coefficients, to 
fit the analysis on the MDCT coefficients [5]. By 
substituting the existing MDCT calculation for FFT 
calculation, encoding speed is accelerated while sound 
quality is maintained. 
 
3.2. Filtering scalefactor values 
 
For each MDCT coefficient, the quantization block 
searches for the quantization step that achieves best sound 
quality below a given bitrate. The derived quantization 
steps for each coefficient are expressed as scalefactor 
values. These values are integral values and are 
differential-coded along the frequency on the basis of the 
values shown in Table 1 [2].  

Since this table is designed so that the smaller 
differential values can be coded with shorter codes, sudden 
major changes or successive minor changes in scalefactor 
values might make the code longer and degrade the coding 
efficiency. To prevent this, a low-pass filter is applied to 
the scalefactor values to suppress the changes. 

 

Table 1: Code table for differential scalefactor values. 

Differential value Code 

60 
: 
3 
2 
1 
0 
-1 
-2 
-3 
: 

-60 

1111111111111110011 
: 

11011 
1100 
1010 
0 
100 
1011 
11010 
  : 
111111111111101000 

 
This method decreases the code bits for the scalefactor 

and increases the code bits available for the quantized 
values. Though low-pass filtered scalefactor values may 
not be the best ones from the psycho-acoustic point of view, 
we have confirmed that bit-reduction by this method leads 
to sound quality improvement. 
 
3.3. Selection of Huffman tables 
 
 In AAC, 1024-MDCT coefficients are quantized and 
grouped into 49 bands called “scalefactor bands”. The 
quantized coefficients are Huffman coded, in which one 
Huffman table is selected from 12 Huffman tables for each 
scalefactor band. In general, the Huffman table which 
outputs the shortest code is selected. The numbers (0..11), 
which indicate the selected Huffman table in each 
scalefactor band, are run-length coded and multiplexed into 
the bitstream as Huffman table information. 
 In the run-length coding, a longer run enables a shorter 
code and improves the coding efficiency. The bit count for 
Huffman table information should be taken into account in 
selecting a Huffman table, and selecting the Huffman table 
that minimizes the Huffman code is not necessarily the best 
approach. A Huffman table should be selected so that the 
total bit count for Huffman code and Huffman table 
information is minimized [2]. To this end, we have 
employed the following procedures in our encoder software 
for selecting Huffman tables. 
(1) For each scalefactor band sfb, select a Huffman table 

which enables the shortest Huffman code, and set the 
selected Huffman table number to cb[sfb] 

(2) Set sfb to 1 
(3) If cb[sfb] = cb[sfb-1], go to (10) because cb[sfb] is 

already suitable for run-length coding and is not to be 
changed 

(4) Calculate the total bit count normal_bits for the 
Huffman code and Huffman table information for 
scalefactor band 0..sfb+1 

(5) Calculate the total bit count bits1 for Huffman code 
and Huffman table information for scalefactor band 
0..sfb+1 with cb[sfb] = cb[sfb-1] 

(6) Calculate the total bit count bits2 for Huffman code 
and Huffman table information for scalefactor band 
0..sfb+1 by replacing the run of cb[sfb-1], which starts 
from (sfb-1) to lower frequency, with that of cb[sfb] 

(7) If normal_bits is the minimum among normal_bits, 
bits1, and bits2, do nothing and go to (10) 

(8) If bit1 is the minimum among normal_bits, bits1, and 
bits2, let cb[sfb] = cb[sfb-1] 

(9) If bit2 is the minimum among normal_bits, bits1, and 
bits2, replace the run of cb[sfb-1] with that of cb[sfb] 

(10) If sfb < 49, increment sfb and go to (3) 
 In these procedures, each neighboring run is examined for 
merging {(5), (6)}. Generally, by merging the runs, the bit 
count for Huffman table information is reduced, and the bit 
count for the Huffman code is increased. If the total bit 
count for the Huffman code and Huffman table information 
would be reduced, the runs are merged {(8), (9)}. 
 These procedures are executed in a quantization loop. In 
the quantization loop, the quantization step which would 
achieve the best sound quality below a given bitrate, is 
searched for over the course of several trials. That is to say, 
in the encoding of a frame, these procedures are executed 
several times.  
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Figure 2: Reduced bit count in each frame. 

 
 
Though these procedures should be repeated until no 

more changes in cb[sfb] are needed, in order to reduce 
complexity, they are executed only once in the quantization 
loop in our implementation. Rather, it is after the 
quantization loop processing in which the best quantization 
step is found that these procedures are executed repeatedly. 

Figure 2 shows the reduced bit count in each frame when 
a typical pop music song (261 sec, 11,255 frames) is encoded 
at 96 kbps/stereo (2,229 bits/frame). The average reduced bit 
count is 267 bits, which is equivalent to 11.5 kbps reduction 
(gaining) in the bitrate. The bit count reduction is derived 
over all frames except for the silent period (at the beginning 
and the end of the song). By re-using the reduced bit count, 
the sound quality can be significantly improved. 
 

4. ACCELERATION BY SIMD INSTRUCTIONS 
 
Most recent PC microprocessors have a SIMD instruction 
set which is designed to accelerate the execution of 
multi-media applications. This section describes how to 
utilize the SIMD instruction set for AAC encoder software.  
 
4.1. Parallel MDCT 
 
MDCT can be efficiently implemented by utilizing FFT [6]. 
It is known that SIMD instructions are effective for 
accelerating such transform operations. Implementation 
examples of a sub-band synthesis filter in MPEG-1 Audio 
and FFT with SIMD instructions have been reported in 
[7],[8]. These methods find the parallelism in one 
transform operation and use SIMD instructions to execute 
multiple operations in one transform by one instruction. To 
make maximum use of SIMD instructions, values to be 
stored on a SIMD register are expected to be located on 
consecutive memory addresses. However, this is not 
possible with sub-band synthesis filters or FFTs because of 
their complex signal-flow. They need re-ordering or 
packing instructions to store multiple values located at 
non-consecutive memory addresses on a SIMD register. 
The overhead resulting from the re-ordering or packing 
instructions degrades execution speed.  
 To reduce the overhead, we took a different approach to 
the use of SIMD instructions for MDCTs. Though 
conventional methods utilize SIMD instructions to perform 

multiple operations in one MDCT, our method utilizes 
them to perform single operations in multiple MDCTs. We 
have implemented this method on an Intel Pentium III 
processor that has a SIMD instruction set (SSE: Streaming 
SIMD Extension) [9] which performs four floating-point 
operations in parallel. In a stereo AAC encoder, four 
MDCTs (left and right channels of current and next frames) 
are performed at the same time by SIMD instructions.  

This method reduces the overhead caused by the 
re-ordering or packing operations described above. By 
interleaving and storing the four input signals to the MDCT, 
complex signal-flow operations can be easily and 
efficiently implemented by the SIMD instructions.  
 With the use of this method, MDCT processing is 
accelerated by 27% without any degradation in sound 
quality. There are two reasons why the processing is not 
accelerated by 75% by 4-parallel processing. One is that 
the SIMD instructions are not four times faster than 
conventional floating-point instructions [9]. The other is 
that we simply rewrote the C-code using the intrinsic 
functions [10]. By rewriting with assembly code, 
performance might be improved further. Our method is also 
applicable to other coding/decoding systems, such as MP3. 
 
4.2. Parallel quantization 
 
In the quantization block, the calculation of (x^0.75) is 
repeatedly executed. This calculation can be done by  
 

pow(M, 0.75) 
 
in C-language. However, the pow(M, N) function needs 
many CPU cycles for execution. Therefore, this calculation 
should be performed as follows: 

 
sqrt(sqrt(M) x M) 

 
By utilizing SIMD instructions, this calculation is done 

in parallel. The simplest way is to replace “sqrt” with a 
SIMD sqrt instruction. However, this is not the best 
approach for a Pentium III processor. In an SSE instruction 
set, “sqrt” is slower than “rsqrt” which calculates (M^-0.5). 
By utilizing “rsqrt” with “rcp”, which calculates (1/M), 
processor-efficient implementation of (M^0.75) can be 
achieved as follows:  

 
rsqrt(rcp(M) x rsqrt(M)) 

 
 These instructions execute four (M^0.75) calculations in 
parallel. By employing SIMD instructions, the quantization 
operation is accelerated by 20%. 
 
 
 

5. PERFORMANCE EVALUATION 
 
We used a PC with an 800 MHz Pentium III processor to 
evaluate the performance of our encoder software. Table 2 
shows the consumed CPU cycles in each AAC block when 
a typical pop music song (44.1 kHz, stereo) is encoded at 
96 kbps/stereo in realtime.  

By employing the new methods described above, our 
encoder software achieves real-time encoding with a 48.6 
MHz CPU (excluding file access), and works 13 times 
 



 

 

 
 

Table 2: Consumed cycles (Mcycle/sec/stereo). 
MDCT 

TNS 
Quantization 

Psycho-acoustic analysis 
Others (Stereo Coding, etc.) 

5.9 
5.8 

20.6 
8.8 
7.5 

Total 48.6 
 
 

Table 3: Seven-grade comparison scale. 
B is much better than A 

B is better than A 
B is slightly better than A 

B is the same as A 
B is slightly worse than A 

B is worse than A 
B is much worse than A 

+3 
+2 
+1 
0 
-1 
-2 
-3 
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Figure 3: Subjective test result. 

 
 

faster than realtime (including file access) and over 100 
times faster than implementation by ISO/IEC[2]. 

We subjected 11 trained listeners to a rough subjective 
quality test using CMOS (Comparison Mean Opinion 
Score) test methodology [11]. The sequence played to the 
listeners for each trial was Ref/A/B, Ref/A/B, where Ref 
was the original (not coded) sound, and A and B were both 
coded signals. The assignment of encoders (MP3/AAC) to 
positions A and B was randomized and unknown to the 
listener. The listeners were asked to judge whether “A” or 
“B” had better sound quality by using a seven-grade 
comparison scale (Table 3). The playback was done using 
STAX Lambda Nova headphones in a controlled 
(acoustically isolated) room. The MP3 encoder used in the 
test was provided by FhG (Fraunhofer-Gesellschaft). This 
encoder is famous for its high sound quality and is widely 
employed in PC jukebox software. Figure 3 shows the test 
results (average scores / 95% confidence interval) obtained. 
The figure shows a comparison of subjective sound quality 
for “castanets”, “pop music”, “glockenspiel”, and “Suzanne 
Vega”, all of which are known as critical materials. As the 
figure indicates, the sound quality of our AAC encoder was 
significantly better than that of MP3 at the same bitrate (96 

kbps/stereo) and was equivalent to or better than that of 
MP3 at 128 kbps. 
 

  
 

6. CONCLUSION 
 

We have developed MPEG-2 AAC LC profile encoder 
software. The introduction of several new methods to 
enhance sound quality and encoding speed have resulted in 
high quality, processor-efficient implementation of 
MPEG-2 AAC encoder software. The encoder achieves 
significantly better sound quality than MP3, and works 13 
times faster than realtime for stereo encoding on an 
800MHz Pentium III processor. 
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