HIGH-QUALITY AND PROCESSOR-EFFICIENT IMPLEMENTATION OF

AN MPEG-2 AAC ENCODER

Yuichiro Takamizawa, Toshiyuki Nomura, and Masao |kekawa
NEC Corporation

ABSTRACT

Presented here is MPEG-2 AAC LC Profile encoder
software for an Intel Pentium Ill processor. MDCT and
guantization processing are accelerated by the use of SIMD
instructions. Psycho-acoustic analysis in the MDCT
domain makes the use of FFTs unnecessary. Better sound
quality is provided by greater efficiency in quantization
processing and Huffman coding. All of this results in
high-quality and processor-efficient implementation of an
MPEG-2 AAC encoder. Sound quality achieved at 96
kbps/stereo is significantly better than that of MP3 at the
same bitrate. The encoder works 13 times faster than
realtime for stereo encoding on an 800MHz Pentium |11
processor.

1. INTRODUCTION

While MPEG-1/Audio Layer 11 (MP3) [1] has widely been
used as a high quality audio coding algorithm for portable
audio devices, PC jukebox software, and Internet music
distribution systems, it is now being replaced by MPEG-2
Advanced Audio Coding (AAC) [2]. AAC can encode an
audio signal of CD quality at 48~64 kbps/ch, a bitrate 30%
lower than that of MP3. In the next few years, a wide range
of AAC products, including portable audio devices and PC
jukebox software, are expected to appear on the market.

In most cases, PC encoder software is currently attached
to such products, and customers demand that it provides
both high sound quality and fast encoding. In general, these
two demands require a trade-off: better sound quality
usually results in slower encoding. While this problem
might be overcome with sufficiently detailed information
regarding encoder implementation, the AAC standard
document [2] describes only decoding procedures and
bitstream format; it says almost nothing about high-quality,
processor-efficient implementations, the performance of an
encoder strongly depends on its manner of the
implementation.

We have developed the necessary techniques for
high-quality, processor-efficient implementation and have
succeeded in developing high-quality, processor-efficient
encoder software for use on an Intel Pentium |1l processor.
This paper describes the performance of our AAC encoder
and the techniques we have employed to achieve high
performance.

Huffman >
™ Coding

A

MDCT | TNS | Stereo Lyl
Coding

r 3 r 3

Psycho-acoustic
Analysis

v

Figure 1: Block diagram of AAC LC profile encoder.

2. AAC ENCODING ALGORITHM

Three coding modes can be used with AAC: Main profile,
Low Complexity (LC) profile, and Scaleable Sampling
Rate (SSR) profile. Our newly developed encoder is
designed to use the LC profile because it has been adopted
for use in Japanese digital TV and currently seems to be the
most widely used of the three in audio applications.

Figure 1 shows the components of an AAC LC profile
encoder. An MDCT (Modified Discrete Cosine Transform)
[3] block transforms an input audio signal into MDCT
coefficients, which represent a frequency spectrum. The
MDCT coefficients are quantized in the quantization block
after redundancies have been removed in the TNS
(Temporal Noise Shaping) block and the Stereo coding
block. The psycho-acoustic analysis block controls the
quantization step to minimize audible quantization error.
The quantized MDCT coefficients are then Huffman coded
and multiplexed to the bitstream.

Though one implementation example of an AAC encoder
software is provided by ISO/IEC[2], its performance is
insufficient in terms of both sound quality and encoding
speed. It works over eight times slower than real-time for
encoding (Pentium I11 800 MHz, 44.1 kHz, 96 kbps/stereo),
and its sound quality is generally worse than MP3 at the
same bitrate. We have found methods, applicable to generic
DSPs and microprocessors, for improving both encoding
speed and sound quality (see Section 3). Further, we have
introduced the use of SIMD (Single Instruction
stream-Multiple Data streams) instructions to increase
encoding speed even more (see Section 4).

3. QUALITY AND SPEED ENHANCEMENT

This section describes three methods we have employed in
our encoder software to improve encoding speed and sound
quality. These methods are applicable to implementation on
generic DSPs and microprocessors.

3.1. Psycho-acoustic analysison MDCT coefficients

In conventional encoder implementations [1],[2], the input
PCM signal is transformed by FFT (Fast Fourier
Transform), and psycho-acoustic analyses, such as masking
calculations, are performed on the FFT coefficients
[1],[2].[4]. We have found, however, that the 2048-point
MDCT employed in AAC has sufficient frequency
resolution for psycho-acoustic analysis and is able to
replace the 2048-point FFT without any degradation in
sound quality. For that reason, we have omitted the
2048-point FFT and utilized existing MDCT coefficients,
which are generated in the MDCT block, for the
psycho-acoustic analysis.

In the MDCT coefficients, the phase information of the
input PCM signa which is utilized in conventional FFT
based psycho-acoustic analysis [1],[2] is lost. We have
modified the conventional psycho-acoustic anaysis
algorithm [4], which is performed on FFT coefficients, to
fit the anaysis on the MDCT coefficients [5]. By
substituting the existing MDCT calculation for FFT
calculation, encoding speed is accelerated while sound
quality is maintained.

3.2. Filtering scalefactor values

For each MDCT coefficient, the quantization block
searches for the quantization step that achieves best sound
quality below a given bitrate. The derived quantization
steps for each coefficient are expressed as scalefactor
values. These values are integral values and are
differential-coded along the frequency on the basis of the
values shown in Table 1 [2].

Since this table is designed so that the smaller
differential values can be coded with shorter codes, sudden
major changes or successive minor changes in scalefactor
values might make the code longer and degrade the coding
efficiency. To prevent this, a low-pass filter is applied to
the scalefactor values to suppress the changes.

Table 1: Code table for differential scalefactor values.

Differential value Code

60 1111111111111110011
3 11011
2 1100
1 1010
0 0

-1 100

-2 1011

-3 11010

-60 111111111111101000

This method decreases the code bits for the scalefactor
and increases the code bits available for the quantized
values. Though low-pass filtered scalefactor values may
not be the best ones from the psycho-acoustic point of view,
we have confirmed that bit-reduction by this method |eads
to sound quality improvement.

3.3. Selection of Huffman tables

In AAC, 1024-MDCT coefficients are quantized and
grouped into 49 bands called “scalefactor bands’. The
quantized coefficients are Huffman coded, in which one
Huffman table is selected from 12 Huffman tables for each
scalefactor band. In general, the Huffman table which
outputs the shortest code is selected. The numbers (0..11),
which indicate the selected Huffman table in each
scalefactor band, are run-length coded and multiplexed into
the bitstream as Huffman table information.

In the run-length coding, a longer run enables a shorter
code and improves the coding efficiency. The bit count for
Huffman table information should be taken into account in
selecting a Huffman table, and selecting the Huffman table
that minimizes the Huffman code is not necessarily the best
approach. A Huffman table should be selected so that the
total bit count for Huffman code and Huffman table
information is minimized [2]. To this end, we have
employed the following procedures in our encoder software
for selecting Huffman tables.

(1) For each scalefactor band sfb, select a Huffman table
which enables the shortest Huffman code, and set the
selected Huffman table number to cb[sfb]

(2) Setsfbtol

(3) If cb[sfb] = cb[sfb-1], go to (10) because cb[sfb] is
aready suitable for run-length coding and is not to be
changed

(4) Calculate the total bit count normal_bits for the
Huffman code and Huffman table information for
scalefactor band 0..sfb+1

(5) Calculate the total bit count bitsl for Huffman code
and Huffman table information for scalefactor band
0..sfb+1 with cb[sfb] = cb[sfb-1]

(6) Calculate the total bit count bits2 for Huffman code
and Huffman table information for scalefactor band
0..sfb+1 by replacing the run of cb[sfb-1], which starts
from (sfb-1) to lower frequency, with that of cb[sfb]

(7) If normal_bits is the minimum among normal_bits,
bitsl, and bits2, do nothing and go to (10)

(8) If bitl is the minimum among normal_bits, bitsl, and
bits2, let cb[sfb] = cb[sfb-1]

(9) If bit2 is the minimum among normal_bits, bitsl, and
bits2, replace the run of cb[sfb-1] with that of cb[sfb]

(10) If sfb < 49, increment sfb and go to (3)

In these procedures, each neighboring run is examined for
merging {(5), (6)}. Generally, by merging the runs, the bit
count for Huffman table information is reduced, and the bit
count for the Huffman code is increased. If the total bit
count for the Huffman code and Huffman table information
would be reduced, the runs are merged { (8), (9)}.

These procedures are executed in a quantization loop. In
the quantization loop, the quantization step which would
achieve the best sound quality below a given bitrate, is
searched for over the course of several trials. That isto say,
in the encoding of a frame, these procedures are executed
several times.

450

&

g

g

250

200

150 = T

Reduced bit count [bit]

100

1 2001 4001 6001 8001 10001
Frame number

Figure 2: Reduced bit count in each frame.

Though these procedures should be repeated until no
more changes in cb[sfb] are needed, in order to reduce
complexity, they are executed only once in the quantization
loop in our implementation. Rather, it is after the
guantization loop processing in which the best quantization
step is found that these procedures are executed repeatedly.

Figure 2 shows the reduced bhit count in each frame when
atypical pop music song (261 sec, 11,255 frames) is encoded
at 96 kbpg/stereo (2,229 bits/frame). The average reduced bit
count is 267 bits, which is equivaent to 11.5 kbps reduction
(gaining) in the bitrate. The bit count reduction is derived
over al frames except for the silent period (at the beginning
and the end of the song). By re-using the reduced bit count,
the sound quality can be significantly improved.

4. ACCELERATION BY SIMD INSTRUCTIONS
Most recent PC microprocessors have a SIMD instruction
set which is designed to accelerate the execution of
multi-media applications. This section describes how to
utilize the SIMD instruction set for AAC encoder software.

4.1. Parallel MDCT

MDCT can be efficiently implemented by utilizing FFT [6].

It is known that SIMD instructions are effective for
accelerating such transform operations. Implementation
examples of a sub-band synthesis filter in MPEG-1 Audio
and FFT with SIMD instructions have been reported in
[71,[8]. These methods find the parallelism in one
transform operation and use SIMD instructions to execute
multiple operations in one transform by one instruction. To
make maximum use of SIMD instructions, values to be
stored on a SIMD register are expected to be located on
consecutive memory addresses. However, this is not
possible with sub-band synthesis filters or FFTs because of
their complex signa-flow. They need re-ordering or
packing instructions to store multiple values located at
non-consecutive memory addresses on a SIMD register.
The overhead resulting from the re-ordering or packing
instructions degrades execution speed.

To reduce the overhead, we took a different approach to
the use of SIMD instructions for MDCTs. Though
conventional methods utilize SIMD instructions to perform

multiple operations in one MDCT, our method utilizes
them to perform single operations in multiple MDCTs. We
have implemented this method on an Intel Pentium Il1
processor that has a SIMD instruction set (SSE: Streaming
SIMD Extension) [9] which performs four floating-point
operations in paralel. In a stereo AAC encoder, four
MDCTs (left and right channels of current and next frames)
are performed at the same time by SIMD instructions.

This method reduces the overhead caused by the
re-ordering or packing operations described above. By
interleaving and storing the four input signals to the MDCT,
complex signal-flow operations can be easily and
efficiently implemented by the SIMD instructions.

With the use of this method, MDCT processing is
accelerated by 27% without any degradation in sound
quality. There are two reasons why the processing is not
accelerated by 75% by 4-parallel processing. One is that
the SIMD instructions are not four times faster than
conventional floating-point instructions [9]. The other is
that we simply rewrote the C-code using the intrinsic
functions [10]. By rewriting with assembly code,
performance might be improved further. Our method is aso
applicable to other coding/decoding systems, such as MP3.

4.2. Parallel quantization

In the quantization block, the calculation of (x"0.75) is
repeatedly executed. This calculation can be done by

pow(M, 0.75)

in C-language. However, the pow(M, N) function needs
many CPU cycles for execution. Therefore, this calculation
should be performed as follows:

sgrt(sqrt(M) x M)

By utilizing SIMD instructions, this calculation is done
in parallel. The simplest way is to replace “sgrt” with a
SIMD sgrt instruction. However, this is not the best
approach for a Pentium |11 processor. In an SSE instruction
set, “sgrt” is slower than “rsgrt” which calculates (M”-0.5).
By utilizing “rsgrt” with “rcp”, which calculates (1/M),
processor-efficient implementation of (M~0.75) can be
achieved as follows:

rsgrt(rcp(M) x rsgrt(M))

These instructions execute four (M”0.75) calculations in
parallel. By employing SIMD instructions, the quantization
operation is accelerated by 20%.

5. PERFORMANCE EVALUATION

We used a PC with an 800 MHz Pentium Il processor to
evaluate the performance of our encoder software. Table 2
shows the consumed CPU cycles in each AAC block when
atypical pop music song (44.1 kHz, stereo) is encoded at
96 kbps/stereo in realtime.

By employing the new methods described above, our
encoder software achieves real-time encoding with a 48.6
MHz CPU (excluding file access), and works 13 times

Table 2: Consumed cycles (Mcycle/sec/stereo).

MDCT 5.9

TNS 5.8
Quantization 20.6
Psycho-acoustic analysis 8.8
Others (Stereo Coding, etc.) 75
Total 48.6

Table 3: Seven-grade comparison scale.

B is much better than A +3
B is better than A +2

B isdlightly better than A +1
B isthesameas A 0

B isdlightly worse than A -1
B isworsethan A -2

B is much worse than A -3

5
@ t % {
0w 27
Q.
Qo
X
g 1y { % {
O
2, $ ¢ 1

-1

AAC 96kbps AAC 96kbps
VS. VS.
27 MP3 96kbps MP3 128kbps

T ® © ©® ® ® © O
(A)castanets (B)pop music (C)glockenspiel (D)Suzzane Vega

Figure 3: Subjective test result.

faster than realtime (including file access) and over 100
times faster than implementation by |SO/IEC[2].

We subjected 11 trained listeners to a rough subjective
quality test using CMOS (Comparison Mean Opinion
Score) test methodology [11]. The sequence played to the
listeners for each trial was Ref/A/B, Ref/A/B, where Ref
was the original (not coded) sound, and A and B were both
coded signas. The assignment of encoders (MP3/AAC) to
positions A and B was randomized and unknown to the
listener. The listeners were asked to judge whether “A” or
“B” had better sound quality by using a seven-grade
comparison scale (Table 3). The playback was done using
STAX Lambda Nova headphones in a controlled
(acoustically isolated) room. The MP3 encoder used in the
test was provided by FhG (Fraunhofer-Gesellschaft). This
encoder is famous for its high sound quality and is widely
employed in PC jukebox software. Figure 3 shows the test
results (average scores / 95% confidence interval) obtained.
The figure shows a comparison of subjective sound quality
for “castanets’, “pop music”, “glockenspiel”, and “Suzanne
Vega’, all of which are known as critical materials. As the
figure indicates, the sound quality of our AAC encoder was
significantly better than that of MP3 at the same bitrate (96

kbps/stereo) and was equivalent to or better than that of
MP3 at 128 kbps.

6. CONCLUSION

We have developed MPEG-2 AAC LC profile encoder
software. The introduction of several new methods to
enhance sound quality and encoding speed have resulted in
high quality, processor-efficient implementation of
MPEG-2 AAC encoder software. The encoder achieves
significantly better sound quality than MP3, and works 13
times faster than realtime for stereo encoding on an
800MHz Pentium |11 processor.

ACKNOWLEDGEMENTS

The authors wish to thank Mr. Ichiro Kuroda, Dr. Akihiko
Sugiyama, and Dr. Masahiro Serizawa for their very
valuable encouragement and support.

REFERENCES

[1] ISO/NEC 11172-3, "Coding of moving pictures and
associated audio for digital storage media at up to about
1.5Mbit/s, Part 3: Audio,” Aug. 1993.

[2] ISO/IEC 13818-7, “Generic coding of moving pictures
and associated audio, Part 7: Advanced Audio Coding
(AAC),” Mar. 1995.

[3] J. Princen and A. Bradley, “Analysis/Synthesis Filter
Bank Design Based on Time Domain Aliasing
Cancellation,” |EEE Transactions on ASSP, Vol. 34, pp.
1153-1161, Oct. 1986.

[4] J. D. Johnston, “Transform Coding of Audio Signals
Using Perceptual Noise Criteria,” |EEE Journal on Selected
Areain Communications, Vol. 6, No. 2, Feb. 1988.

[5] T. Nomura, Y. Takamizawa, “Processor-Efficient
Implementation of a High Quality MPEG-2 AAC
Encoder,” to be presented at AES 110" Convention, May
2001.

[6] D. Sevic and M. Popovic, A New Efficient
Implementation of the Oddly Stacked Princen-Bradley
Filter Bank,” |EEE Signa Processing Letters, Vol. 1, No.
11, pp. 166-168, Nov. 1994.

[7] Intel, “Using MMX™ Instructions to Implement a
Synthesis Sub-Band Filter for MPEG Audio Decoding,”
http://devel oper.intel .com/software/idap/resources/technica
|_collateral/mmx/ap533.htm.

[8] Intel, “Using MMX™ [nstructions to Perform Complex
16-Bit FFT,”
http://devel oper.intel .com/software/i dap/resources/technica
|_collateral/mmx/AP555.HTM.

[9] K. Diefendorf, “Pentium Il = Pentium Il + SSE
MICROPROCESSOR REPORT, Vol. 13, No. 3, Mar. 1999.
[10] Intel, “ Software Devel opment Strategies for Streaming
SIMD Extensions’,
http://devel oper.intel .com/vtune/cbts/strmsimd/appnotes/ap
814/swdevel .pdf

[11] B. Edler, JHerre, and K.Brandenburg, “Core
experiment methodology for MPEG-4 audio,” ISO/IEC
JTCL1/SC29/WG11, N1748, Jul. 1997.

	AN MPEG-2 AAC ENCODER
	Yuichiro Takamizawa, Toshiyuki Nomura, and Masao Ikekawa
	NEC Corporation
	ABSTRACT

