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ABSTRACT

The steady-state performance of adaptive equalizers can
significantly vary when they are implemented in finite preci-
sion arithmetic, which makes it vital to analyze their perfor-
mance in a quantized environment. In this paper we present
a fixed point analysis for the steady-state mean square error
(MSE) of a blind adaptive equalizer and the optimal value
of the step-size that minimizes this MSE. Such expressions
are useful for selecting the adequate wordlength of a blind
equalizer to achieve a specific desired steady-state perfor-
mance.

1. INTRODUCTION

In this paper, we derive expressions for the steady-state
mean square error (MSE) of a blind adaptive equalizer and
the optimal value of the step-size that minimizes this MSE.
We focus on the constant modulus algorithm (CMA), which
is among the most widely used algorithms for (fractionally-
spaced) blind equalization [1, 2]. Its update equation is
highly nonlinear, which makes it difficult to evaluate the
steady-state MSE using conventional techniques that are
used for analyzing the steady-state performance of adaptive
filtering algorithms in general. A major feature of the ap-
proach proposed herein is that it bypasses the need for work-
ing directly with an update equation for the weight-error
vector. This is achieved by exploiting an energy-preserving
relation that in fact holds for a general class of adaptive
algorithms (e.g., [3, 4, 5]). Throughout the paper, we use
the channel-equalizer model used in [2, 6]. We focus on
fractionally-spaced equalizer implementations due to their
inherent advantages (see, e.g., [1, 2]).

A blind adaptive equalizer w is one that attempts to ap-
proximate a zero forcing equalizer w® without knowledge of
the channel impulse response ¢ and without direct access to
the transmitted sequence {s(-)} itself. A zero forcing equal-
izer leads to an overall channel-equalizer impulse response
of the form

hp =€ coll0, ..., 0,1,0,...,0], j=+/—1 (1)

for some constant phase shift § € [0, 2], and where the unit
entry is in some position D. Thus under such conditions,
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the output of the channel-equalizer system will be of the
form y(i) = s(i — D)e?’, for some {D, §}.

Approximating the zero forcing solution is achieved by
seeking to minimize certain cost functions whose global
minima generally occur at the location of zero forcing equal-
izers. The most popular adaptive blind algorithms are the
so-called constant modulus algorithms [7]. They are derived
as stochastic gradient methods for minimizing the cost func-
tion:

Jom(w) = E(ly()” — Ry|)

where y(i) = u;w is the equalizer output, u; is an input row
vector (regressor) to the equalizer, R, is suitably chosen in
order to guarantee that the global minima of Joa (W) occur
at zero forcing solutions (see, e.g., [7]). In this paper we
focus on the following stochastic gradient variant, known as
CMAZ2-2, or simply the CMA. In this case, we select p = 2,

E|s(s)|*

B = 5GP

and the update equation for the weight estimates is given
by

Wit1 = Wi + pug fe(d) (2)
where

fe(@) = y(i) [Rz — |y(i)|°] 3)

with a step-size u. The row vector u; is the input data
regressor to the adaptive equalizer and y(i) = u;w; is the
output of the adaptive equalizer. The symbol * denotes
complex conjugate transposition.

Since this algorithm is based on instantaneous approx-
imation of the true gradient vector of the cost function
Joum (w), the equalizer output y(i) need not converge to a
zero forcing solution of the form s(i— D)e’® due to the pres-
ence of gradient noise. Therefore, the steady-state mean-
square-error,

2
MSE = lim E |y(i) — s(i — D)e’
11— 00
is often used as a performance index of the adaptive equal-
ization algorithm. Moreover, in finite precision implementa-
tions, quantization of the various equalizer quantities intro-
duce errors that can cause the performance of the equalizer



to vary significantly from the expected performance in the
infinite precision case. In this paper we evaluate the MSE
of a blind equalizer in a quantized environment, without
directly using the weight error vector w; = w° — w;.

2. A QUANTIZED MATHEMATICAL MODEL

Figure 1 shows the quantized model used in the paper. Sim-
ilar models have been used in the context of finite precision
analyses of adaptive algorithms. In this figure, Q[z] de-
notes the fixed point quantization of the value x, and the
superscript ¢ distinguishes quantized quantities from infi-
nite precision quantities. Throughout the paper, rounding
quantization is considered. It is also assumed that the satu-
ration thresholds of the quantizers are properly chosen such
that saturation errors are negligible. Thus, only rounding
errors are considered. The variance o of the rounding error
is related to the quantizer saturation threshold L according
to

2 _ 2—2BL2

g 12

where it is assumed that the quantizer uses B bits in ad-
dition to a sign bit. The values of B and L considered for
quantization of the data (u;, d(i), and y(z)) will be denoted
by B4 and L4 and the ones considered for quantization of
the equalizer coefficients will be denoted by B and L.. The
corresponding values of o2 will be denoted by o2 and o2,
respectively. We can write

y* (i) = uiwi + (i) (4)

where (%) is the quantization error that occurs in comput-
ing the term u/w{. The variance of y(4), 02, depends on the
procedure by which y?(7) is computed. If all N products in-
volved in ufw{ are computed with high precision, summed,
and the final result is quantized to By bits, then 03 is ap-
proximately equal to o3. If each one of the N products is
quantized to, say By bits, and the sum is then quantized to
By bits with B, being significantly greater than Bg, o2 is
equal to o2 + N, 05. Moreover, the quantized error function
of the CMA is given, from (3), by

i@ = Q') [RE—Q [y @I]]]
= y'0) [RE - [y" Q) +er(i)] +ex(i)  (5)
where R} = Q [R2], and e1(z) and e2(4) are two quantization

errors of variances of = o5 = 03. Taking the above quanti-
zations into effect, the CMA update equation becomes

Wi, = wltQuu’ f(i)]
= wltpul fI(@)—mi  (6)

where m; is a vector of multiplication quantization errors

in the update term pu?* fZ(e?(z)), each entry of which has

variance 2. The weight error vector is now defined as

w; = w’ —wi (7)
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Figure 1: CMA quantization model.

3. QUANTIZED ENERGY RELATION

Based on the quantization model of the previous section,
we now derive an energy preserving relation for quantized
CMA. This energy relation will be used in the next section
to derive a MSE expression for the quantized CMA.

Introduce the a-priori and a-posteriori estimation er-
rors,

ea(i) = s(i— D)’ —yi(6) = ulw{ — ulw; = ulw;

ep(i) = uf (Vi1 —my)

If we subtract w° from both sides of (6) and multiply by
u! from the left, we find that the errors {ep(s), eq(i)} are
related via:

ep(d) = ea(i) — == £2(i) ®)

where we defined, for compactness, fi(i) = 1/|[uf||*>. Sub-
stituting (8) into (6), we obtain the update relation

Wit1 = Wi — fi(d)u] [ea (i) — ep(d)] + my

By evaluating the energies of both sides of this equation we
obtain

W1 — mil|* + A3 ea (d)|* = 1Will* + A(3) ep(B)* (9)
To proceed, we impose the following modeling assumption:

A.1 Quantization errors are zero-mean, mutually independent,
and independent of all other signals.

This assumption is typical in the context of finite pre-
cision analysis of adaptive algorithms and it enables the
derivation of closed-form expressions for the steady-state
MSE. A more sophisticated nonlinear model for treating
quantization errors, which takes into account the quantizer
underflow effects, has been used in [8] for the LMS algo-
rithm; though it does not lead to closed-form expressions.

Imposing the equality E||W;1]||*> = E||W;||® in steady-
state, and using (8) and A.1, it is straightforward to verify



that the energy relation (9) leads to the following error vari-
ance relation, in terms of e4 (%),
2
)(10)

where M = E (m;m]). For iid multiplication errors, Tr(M) =
No?. This equation can now be solved for the steady-state
mean-square-error (MSE):

B (()lea()?) = Tr(M)

+E (p(i) ea(i) — %fé‘(i)

¢ £ lim Blea (i)’

4. STEADY-STATE MSE OF THE QUANTIZED
CMA

We now apply the above results to the CMA recursion (2).
For mathematical tractability of the analysis, we impose
the following two reasonable assumptions in steady-state
(i — co0) — for more motivation and explanation on these
two assumptions, see [6, 9]:

A.2 The transmitted signal s(¢ — D) and the estimation er-
ror eq(i) are independent in steady-state so that E(s* (i —
D)eq(4)) = 0, since s(z — D) is assumed zero mean.

A.3 The scaled regressor energy p?||u;||? is independent of
y%(7) in steady-state.

We consider first the case of real-valued data {s(-), y%(), u;}.

In this case, we can assume that the zero forcing response
hp that the adaptive equalizer attempts to achieve (cf. (1))
can be of either form hp = %£[0,...,0,1,0,...,0]. In the fol-
lowing, we continue with the choice hp = [0, ...,0,1,0, ..., 0],
which yields eq(i) = s(¢ — D) — y%(). A similar analysis
holds for the case hp =0, ...,0,—1,0,...,0].

Substituting (5) into (10), we obtain

B (50 lea D) = To(M) + B (00 |ea(i)

—ﬁ (5() [RE— (y(1))* + ex(9)] + e2())

2)(11)

We shall write more compactly

1>

eali), =@, y=y(i),

uf, sés(i—D), eléel(i), e2éez(i)

€a

A
u! =

for ¢ — o0, so that (11) becomes, after expanding,
2uE (ea y [RY —y® +e1] + eq €2) = Tr(M)
+ U’ E (||u"||2 (y [RE—y"+e] + 62)2)
Using this equality we can now obtain an expression for the

steady-state MSE, E (eg). Replacing y by s — eq, using as-
sumptions A.1-A.3 and neglecting 2u E (eﬁ), for sufficiently

small p and small €2, it is straightforward to show that the
steady-state MSE can be approximated by

(M (real) =
Tr(M)/u+ pE(s?RY® — 2R1s* + s%0% + s° + 03) E ||u?||?
2E(3s?2 — R3)

This result implies that the steady-state MSE is composed
of two terms. The first term decreases with p and increases
with the multiplication error variance Tr(M). The sec-
ond term increases with p and the received signal variance,
E ||u?||?. Thus, unlike the infinite precision case (see, e.g.,
[6, 9]), the steady-state MSE is not a monotonically increas-
ing function of . We can also see that in the noiseless case,
and for non-constant modulus data {s(-)}, there exists a fi-
nite optimal value of the step size, p,, that minimizes the
above expression for the steady-state MSE, which is given

by

CMA
Po =

\/Te(M)/ [E (R$® — 2Ris* + 5202 + 59 + 03) B [Juv ]

where E|u?|> = Eu?"u! = E|jwl|® + Noj. This ex-
pression shows that p, decreases with the signal variance,
E|lu?||?, and increases with the multiplication error vari-

ance Tr(M). The corresponding minimum value of the
steady-state MSE is then given by

SMA (real) =

\/’I‘r(M) E (s2R4” — 2R}s* + s202 + 5% + 02) E ||us||2

E(3s?2 — RY)

Here we may add that for complex-valued data, the steady-
state MSE will have a different expression than that in the
real-valued case. Following the same derivation, and assum-
ing signal constellations that satisfy the circularity condi-
tion Es*(i) = 0, in addition to the condition E(2|s(i)|* —
R3) > 0 (both of which hold for most constellations [7]),
we can show that the steady-state MSE for complex-valued
data, and for sufficiently small step-sizes, can be approxi-
mated by

¢ MA (complex) ~
Tr(M)/p + pB(s|?RS” — 2R]|s|* + |s|?0F + [s|® + 03) B [|lu?|?
2E(2ls? — BY)

In this case, the optimum value of the algorithm step
size still has the same value as in the real-valued data case,
while the minimum achievable steady-state MSE is given by

SMA (complex) =

\/Tf(M) E (|s|?R§” — 2R§|s|* + |s|?07 + |s[¢ + 03) E ||us|?
E(2[s|* — R3)

Finally, we may add that, for the infinite precision case

(62 = 0} = 0), the expressions for the steady-state MSE

reduce to the expressions obtained in [6].



5. SIMULATION RESULTS

‘We now provide some simulation results that compare the
experimental performance with the one predicted by the
derived expressions. The channel considered in this sim-
ulation is given by ¢ = [0.1,0.3,1,-0.1,0.5,0.2]. A 4-
tap FIR filter is used as a %—fractionally spaced quantized
equalizer, with B, = By = 8, and 9. In this simula-
tion, the transmitted signal was 6-PAM constellated, s(i) €
{1,0.6,0.2,-0.2, 0.6, —1} with E s® = 0.3489, E s* = 0.3771,
Es? = 0.4667, and Rz = 0.808. The value of ||u;||* is the
norm of the received signal vector. The value of E |ju;||* was
computed as the average over 10,000 realizations of |ju;]|?.
The value of experimental MSE was obtained as the average
over 100 repeated runs.

Figures 2 and 3 are plots of the experimental MSE and
the theoretical MSE versus the step-size pu for B, = Bg=
8 and 9 bits, respectively. It can be seen from the figure
that the theoretical results reasonably match the experi-
mental results. We can also see that, for B. = Bg= 8 bits,
the experimental MSE reaches a minimum value of -30.13
dB, which corresponds to an optimal value of p equal to
1.5 x 1072, while our theory predicted a minimum achiev-
able MSE of -30.38 dB at y, = 0.94 x 1072, For B, = By=
9 bits, the experimental MSE reaches a minimum value of
-32.11 dB, which corresponds to an optimal value of u equal
to 1072, On the other hand, our theory predicted a mini-
mum achievable MSE of -33.38 dB at p, = 0.47 x 1072,
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Figure 2: Theoretical and simulation MSE of CMA for B, =
Bg= 8.

Here we note that the experimental value results vali-
date that the steady-state MSE is not a monotonically in-
creasing function of u, as predicted by our analytical re-
sults. Furthermore, the experimental values of the mini-
mum achievable MSE match reasonably well the analytical
values. Thus, the derived results for the minimum MSE can
be reliable in predicting the best steady-state performance,
which the CMA can achieve for a given wordlength. How-
ever, the experimental values for the optimum step size are
lower than the corresponding predicted analytical values.
This is due to quantizer underflow effects that were not
taken into consideration in our quantization model. Thus,
a more conservative (larger) design value for p, should be
taken into consideration to account for this effect.
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Figure 3: Theoretical and simulation MSE of CMA for B, =
Bg=9. 6. CONCLUSIONS

In this paper, a finite precision analysis of a blind equal-
izer using the CMA algorithm was presented. Expressions
for the steady-state mean-square-error were derived. It was
found that, unlike the infinite precision case, the MSE is not
a monotonically increasing function of the step size. The
value of the optimum step size that minimizes MSE and the
corresponding value of the MSE were derived. Simulation
results show reasonable match with the analytical results.
However, taking the effects of quantizer underflow into con-
sideration remains an open issue for future work.
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