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ABSTRACT

In this paper, we study the problem of filterbank design for
the subband identification method in the oversampled case.
We aim to design the filterbanks such that the coupling be-
tween adjacent subbands is minimized. This will allow the
subband model of the system to be diagonal, thus simplify-
ing the complexity of identification. Solutions are given to
two minimization criteria: the worst-input case and white-
input case.

1. INTRODUCTION

The linear system identification problem has been exten-
sively studied [1]. Algorithms based on least-squares are
commonly employed in practice and their behaviors are well
understood. However, the direct use of this algorithm is un-
suitable for real-time applications where high order finite
impulse response (FIR) models are required (e.g. speech
echo cancellation and channel equalization).

These difficulties have motivated a new line of research on
system identification that uses subbands [2, 3]. Loosely
speaking, the subband approach divides the input and output
signals into a number of subbands using two filter banks.
Then for each subband channel, a model is identified. Fi-
nally, the subband models are combined to give a full-band
model. It is known that the subband approach leads to im-
provement in computational cost savings, convergence rate
and residual error, when the system to be identified has a
long impulse response.

If the subband filters are non-ideal, the so called ”cross-
models” are needed to model interference between different
subbands (2.5) [2]. In such case, the subband model is said
to be coupled. Decoupled subband identification, in the crit-
ically sampled case (number of subbands equals the down-
sampling factor), requires that the filters have very sharp
band edges. This drastically increases the filter tap size
and therefore the computational cost. In the oversampled
case (number of subbands greater than the downsampling
factor), the filters are allowed to have a non-zero transition
band and therefore smaller tap sizes.

In this work, we consider an oversampled subband identifi-
cation scheme, with a decoupled subband model. As said
before, in order to perfectly identify the fullband system
with a decoupled subband model, we need the subband fil-
ters to be ideal. In spite of that, we will consider non-ideal
FIR filters, and introduce the optimization criteria for the
subband filter design, in order to minimize the identifica-
tion error. This is done for the worst-input case and for the
white-input case.

2. PRELIMINARIES

2.1. Frames

The following are some basic definitions and results about
frames. For a more detailed presentation see [4].

Definition 1 Let H be a separable Hilbert space. A set
fei 2 H : i 2 Ig is a frame if there exist constants A;B >

0 such that
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The tightest A and B are denoted by �A and �B, respec-
tively. The operator T : H ! l2(I) defined by (Tx)i =
hx; eii (8i 2 I)(8x 2 H) is called the frame operator.

Remark 2 Denote by T � the adjoint operator of T . Then
the pseudo-inverse of T is given by T + = (T �T )�1T �, i.e.,
T+T is the identity operator. It is obvious that kTk = �B1=2;
kT+k = �A�1=2

Proposition 3 Given a frame fei 2 H : i 2 Ig and the
associated frame operator T , there exists a set fe+i 2 H :
i 2 Ig such that for any c 2 l2(I),

T+c =
P

i2I cie
+
i

The set fe+i g above is called the dual frame of feig.



2.2. Filterbank Approaches

Consider the filterbank scheme in figure 1 which involves
an analysis filterbank and a synthesis filterbank.
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Fig. 1. Filterbank Block Diagram

Filterbanks can be studied and understood using different
approaches. In this work we will use the alias approach and
the frame approach.

Alias approach: The output �x(z) can be written as

�x(z) = 1
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T (z)HT
A(z)XA(z)

where

XA(z) = [x(z) x(Wz) � � � x(WD�1z)]T

f(z) = [f0(z) f1(z) � � � fM�1(z)]T
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and W = e�j
2�
D . Which means that the filterbank behaves

as a linear time-invariant system from the input XA(z) to
the output �x(z).

Frame approach: In order for the synthesis filterbank to be
perfectly reconstructing, it is required that

1
Df

T (z)HT
A(z) = [1; 0; :::; 0]z�� (2.1)

where � represents the reconstruction time delay. Define
b(z) = z��f(z). Then b(z) is a perfect reconstructing syn-
thesis filterbank with no time delay. Using the frame ap-
proach, we define

eij(t) = h�i (jD � t) 2 H; (i; j) 2 I (2.2)

where I = f(i; j) : i = 0; :::;M � 1; j 2 Zg and H =
l2(Z). Then feij ; (i; j) 2 Ig is a frame. It can be checked
that (2.1) can be guaranteed by taking b(z) such that.

bi(t� jD) = e+ij(t); (i; j) 2 I (2.3)

where fe+ijg is the dual frame of feijg. We will see later
that this choice of b(z) not only satisfies (2.1) but also has
additional nice properties. The input-output relationship is
given by

�x = T�T
+Tx (2.4)

where T , T+ are the frame operators for feijg, and fe+ijg,
and T� is the time delay operator.

2.3. Subband Identification

The subband identification scheme is shown in figure 2,
where g(z) represents a linear time-invariant system with
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Fig. 2. Subband Identification Block Diagram

input u(z), output y(z) and measurement noise v(z); h(z) =
[h0(z); :::; hM�1(z)]T , f(z) = [f0(z); :::; fM�1(z)]T are
analysis filterbank and synthesis filterbank respectively, and
Ĝ(z) = [Ĝij(z)]

M�1
i;j=0 represents an equivalent model of

g(z) in the subband with down-sampling rate D.

Decoupling Condition: To simplify the analysis we as-
sume that hm(z) = h0(V

mz), m = 0; :::;M � 1 (i.e.
the subband filters come from frequency shifting of a pro-
totype), where V = e�j

2�
M and h0(z) is a low-pass filter.

In order for the subband model Ĝ(z) to be diagonal, it is
needed that

h0(W
dz1=D) = 0; d = 1; :::; D � 1 (2.5)

The following convention is used throughout this paper: for
any D 2 N, and z = r exp(j�), r; � 2 R,

z1=D = r1=D exp(jmod(�;2�)��D ):

3. IDENTIFICATION ERROR BOUND

If (2.5) is satisfied, we only need to identify the diagonal
terms of Ĝ(z): However, (2.5) can only be an approximate
in practice due to the fact that non-ideal filters are used.
One remedy is also to identify off-diagonal terms of Ĝ(z).
However, this will increase the computational complexity.
Alternatively, we can ignore the off-diagonal terms but try
to minimize the errors caused by the non-ideal filterbanks.
This is what we intend to do in this section. More specif-
ically we consider two cases: the worst–input case and the
white-input case. In the sequel we assume that v(z) = 0.

3.1. Identification Stage

Apply the signal u(z) to the input and assume we perfectly
identify the input-output relation in each subband. Then,



using the alias approach,

Ĝmm(z) =
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for m = 0; :::;M � 1.

3.2. Reconstruction Stage

Now apply a different input signal u 0(z). Then,

V̂ 0m(z) = 1
D

PD�1
d=0

�
Ĝmm(z)� g(W dz1=D)

�

hm(W dz1=D)u0(W dz1=D)
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for m = 0; :::;M � 1. We can use the frame approach to
write it as

V̂ 0 = ~Tu0 (3.3)

where ~T is the map u0(z) 7! [V̂ 00(z); :::; V̂
0
M�1(z)]

T . Now
we are ready to state the results for the two cases above.

3.3. Worst-Input Case Input

Lemma 4 Consider the mapping in (3.3) and define

C = supm;d
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(3.4)
where �m(z) = V �m(V Dmz)1=D, then
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Proof: From (3.2) and taking into account that hm(z) is
close to zero outside its support, we have that

V̂ 0m(z) ' 1
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(3.5)
Now, taking into account and that the right hand side of (3.1)
does not change if we replace z1=D by �m(z), we have that

Ĝmm(z)� g(�m(z)) '
PD�1

d=1

�
g(W d�m(z))� g(�m(z))

�
hm(W

d�m(z))
hm(�m(z))

u(Wd�m(z))
u(�m(z))

(3.6)
then, combining (3.5) and (3.6)
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since hm(W d�m(z)) = h0(W
dz1=D). Then
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and the result follows immediately from the definition of the
norm of a linear operator

We know that if we choose the synthesis filterbank as in
(2.3), its associated operator will be the pseudo-inverse of
the operator associated with the analysis filterbank. This
option has the property that cancels every component of the
subband signals that is orthogonal to the range of the anal-
ysis filterbank (the subspace of possible subband signals).
Clearly, this is the best option for the synthesis filterbank,
since it minimizes the energy of v 0(z) while preserving the
perfect reconstruction property. With this choice for the
synthesis filterbank, using the frame approach, and in view
of (3.3), we can express the reconstruction error as

v̂0 = T�T
+ ~Tu0 (3.8)

Lemma 5 Let T be the frame operator associated with the
frame defined by (2.2), and let �A > 0 be its tightest lower
bound, then
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where
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Proof: The proof follows the proof of section 3.3.2 (pp. 67)
in [5]

Combining lemmas 4 and 5, we have the next result

Theorem 6 The norm of v̂0(z) is bounded by

kv̂0(z)k2 �
Cp
E
F ku0(z)k2 (3.10)

Proof: Form (3.8) we have that

kv̂0k2 � kT�k kT
+k
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 ku0k2

Is easy to see that kT�k = 1. Then the result follows imme-
diately from (3.9) and remark 2



3.4. White-Input Case

If the signal u0(z) in the reconstruction stage is a white ran-
dom process, it can be shown by following similar steps that

Efv̂02(t)g = Cp
E
F̂Efu2(t)g (3.11)

where C is in (3.4) and

F̂ =
�PD�1

d=1



h0(W dz1=D0)


2
2

�1=2
(3.12)

4. FILTERBANK DESIGN

In (3.10) and (3.11), C does not depend on the filter de-
sign. Also it can be shown that E does not depend either,
provided that the prototype is close to zero in its stop band.
Then, the designs should aim to minimize just the term F

and F̂ respectively.

In summary he filter prototype (see figure 3) needs to be:

1. FIR, to be able to use the relation given in [5] to con-
struct the synthesis filterbank.

2. lowpass so as to generate all the M subband filters,
from the prototype h0(z), by frequency shifting.

3. approximately a constant value in its passband (�!1 <

! < !1).
4. optimized such that F (or F̂ ) is as small as possible

!2

h0(z) h1(z)

!1 �

Fig. 3. Filter Prototype

For the worst-input case, the suggested optimization scheme
is to start with a Parks-McClellan filter, which gives an equir-
riple FIR filter. Then, a nonlinear optimization algorithm is
used to improve the above filter.

For the white-input case, it is known that the optimal filter
that minimizes F̂ in (3.12) is an eigenfilter; see [6].

4.1. Numerical Example

As an example we consider a subband identification scheme
with white inputs, u(z) and u0(z). Also,M = 6,D = 4 and
h0(z) has a tap size of 20. We compare the norm of v̂ 0(z)
for tree filterbank prototypes: the Parks-McClellan filter, the
optimized worst-input case filter and the eigenfilter.

Figure 4, shows the frequency response of all tree filters,
and figure 5 shows the comparison of the responses in the
stopband
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Fig. 5. Stopband detail

The identification error obtained by using the Parks-McClellan
filter is 1:04� 10�3, for the optimized worst-input filter is
7:89 � 10�4 and for the eigenfilter is 6:55 � 10�4. Obvi-
ously, the eigenfilter gives the best error because the input
u0(z) is white. It should be noted that the optimized worst-
input case filter may outperform the eigenfilter if u 0(z) is
not white.

5. CONCLUSION

In this work we have studied the oversampled subband iden-
tification scheme with a decoupled subband model, using
FIR filters. We have introduced a bound for the identifica-
tion error power originated by the use of non-ideal filters.
This bound depends on the subband filter prototype. Next,
we have used the expression of the bound to find optimal
choices to minimize it in both the worst-input case and the
white-input case.
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