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ABSTRACT

The Autocorrelation Matching method is a blind signal separation
and channel equalization technique for distributed MIMO commu-
nication systems over unknown FIR channels using only second
order statistics. This method is based on a theoretical discovery,
i.e., under the condition that the autocorrelation functions of the
(multiple) inputs are linearly shift-independent, an input is recov-
ered, up to a unitary factor and a delay, by an output of an MIMO-
FIR equalizer if and only if the autocorrelation function of the out-
put matches that of the input. An optimal zero-forcing equalizer
is developed to maximize the SNR for the outputs, i.e., the recov-
ered inputs. Some preliminary simulation results show that the
BER in the recovered inputs is about 3 � 10�5 at the SNR = 15
dB. This method has the potential to be applied to cellular wireless
communications for the purpose of boosting spectrum efficiency
or suppressing co-channel interference.

1. INTRODUCTION

Recently, MIMO (Multiple Input Multiple Output) communica-
tions techniques have been under intensive study, in light of the
ultra high spectrum efficiency that MIMO communications sys-
tems can achieve. The essence of MIMO communications is: (1)
using multiple transmitters to transmit multiple signals over the
same carrier simultaneously as if each signal would have occu-
pied the channel exclusively; and (2) using some signal processing
technique to separate the individual transmitted signals from the
received mixtures out of a receiving antenna array. Theoretically,
the channel capacity (bits per second per Hz) for an MIMO com-
munications system is roughly proportional to the number of the
transmitters [2]. A pioneer prototype developed by Bell Labs sci-
entists has demonstrated such ultra high spectrum efficiency in lab
environment [3].

Up to now, the research of MIMO communications has been
dominated by that of space-time coding techniques, which has
made tremendous success in new communications theory devel-
opment [10]. The principle of space-time coding techniques is to
introduce coding redundancy in the multiple transmitted signals
in both space dimension (in terms of cross-correlations between
the multiple transmitted signals) and time dimension (in terms of
autocorrelations in the individual transmitted signals). This redun-
dancy information will then help to recover the transmitted sym-
bols after the transmitted signals are separated from the MIMO
channel that is identified using training sequences. Clearly, in or-
der to apply space-time coding techniques, all transmitters in an
MIMO communications system must be synchronized.

As a supplement for space-time coding techniques, a new sig-
nal processing scheme, called the Autocorrelation Matching (AM)
method, is proposed in this paper for distributed MIMO communi-
cations over unknown FIR channels, where it is difficult or impos-
sible to synchronize distributed transmitters. At each transmitter,
the AM method introduces distinctive information in the autocor-
relations of the transmitted signal. At the receiver, the individual
transmitted signals can be recovered from the received mixtures
by matching the autocorrelations between the processed signals
and the transmitted signals.

The AM method is a blind signal separation and channel equal-
ization method. That is, it doesn’t rely on training sequences to
identify the MIMO-FIR channel. Instead, it bypasses the process
of channel identification and directly achieves the signal separa-
tion and channel equalization by adjusting the parameters of an
MIMO-FIR equalizer at the receiver until the autocorrelations of
the output signals of this equalizer matches those of the transmitted
signals.

Furthermore, the AM method is a blind signal separation and
channel equalization method suitable for wireless communications.
Differing from many celebrated blind signal separation and chan-
nel equalization methods based on high-order statistics (HOS) [5,
6, 11], the AM method only needs to estimate a set of shifted sec-
ond order statistics (SOS) of the received signals. This is impor-
tant, because wireless channels are fast time-varying and thus of-
ten only a couple hundreds of signal samples are available before
the channel characteristics have changed significantly, which are
sufficient for SOS estimation but insufficient for HOS estimation.
In addition, compared with other elegant blind signal separation
and channel equalization methods based on cyclo-stationary SOS
[1, 12] or SOS [7, 13], the AM method needs less conditions on
transmitted signals and MIMO-FIR channels.

The AM method has the potential to be applied to cellular
wireless communications in two scenarios. (1) If a base station
has multiple antennas but mobile stations have only single anten-
nas, the uplink can form a distributed MIMO communications sys-
tem and thus multiple mobile stations can transmit signals to the
base station over the same carrier. In this case, the AM method
can significantly improve the uplink spectrum efficiency. (2) If a
mobile station has multiple antennas, the downlink from desired
base station and that from interfering base stations can also form
a distributed MIMO communications model. In this case, the AM
method can be used to suppress co-channel interference.

The rest of this paper presents the system model, the theoretic
fundamental, and an optimal algorithm for the AM method.



2. SYSTEM MODEL

A distributed MIMO communications system based on the AM
method is given in Fig.1.
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Fig.1 A distributed MIMO communications system

where,

w(t): an N � 1 white source signal.
w(t) = [w1(t); w2(t); � � � ; wN (t)]

T

F(z): an N �N diagonal pre-filter to be designed.
F(z) = diag(f1(z); f2(z); � � � ; fN (z))

s(t): an N � 1 transmitted signal.
s(t) = [s1(t); s2(t); � � � ; sN (t)]

T

H(z): an (unknown) M �N FIR channel.
H(z) = [

PLh
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h
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n(t): an (unknown) M � 1 additive noise.
n(t) = [n1(t); n2(t); � � � ; nM (t)]T

x(t): an M � 1 received signal.
x(t) = [x1(t); x2(t); � � � ; xM(t)]T

E(z): an N �M FIR equalizer to be designed.
E(z) = [

PLe

l=0
e
(l)
nmz

�l]
N;M
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y(t): an N � 1 processed signal.
y(t) = [y1(t); y2(t); � � � ; yN (t)]

T

The system can be described by,(
s(t) = F(z)[w(t)]

x(t) = H(z)[s(t)] + n(t)
y(t) = E(z)[x(t)] = C(z)[s(t)] +E(z)[n(t)]

where, t 2 Z. The polynomial matrices, F(z), H(z), E(z), and
C(z), act as convolution operators in these equations, e.g.,

H(z)[s(t)] =

LhX
l=0

Hls(t� l)

The pre-filter F(z) has a diagonal form, which means no cross-
correlations between transmitted signals. The composite system
response, E(z)H(z), is represented by an N �N polynomial ma-
trix C(z) with a degree of L = Lh + Le.

The objective of the AM mothod is to design a pre-filter F(z)
and a blind equalizer E(z) that matches the autocorrelations of
the transmitted signal s(t) with those of the processed signal y(t),
such that the following zero-forcing condition is satisfied,

C(z) = diag(d1z
�l1 ; d2z

�l2 ; :::; dNz
�lN )

with jdnj = 1 and 0 � ln � L for every n = 1; 2; :::; N .
Note that the actual sequence of the transmitted signal s(t) and
the MIMO-FIR channel H(z) (including Lh, the degree of H(z))
are unknown in the above process.

The following assumptions are needed throughout this paper.
They will not be repeated in theorem statements.

AS1 w(t) is a wide-sense stationary vector sequence with zero
mean and, without loss of generality, unit variance.

AS2 w(t) is spatially uncorrelated and, without loss of general-
ity, temporally white, i.e., E(w(t)wH(t� k)) = Æ(k)I.

AS3 jC(z)j 6= 0 for some z.

AS4 n(t) is a wide-sense stationary vector sequence with zero
mean and unknown variance [�21 ; �

2
2 ; � � � ; �

2
M ]T .

AS5 n(t) is spatially uncorrelated and temporally white, i.e.,
E(n(t)nH(t� k)) = Æ(k)diag(�21 ; �

2
2 ; � � � ; �

2
M ).

3. PRELIMINARIES

First, the existence of an MIMO-FIR equalizerE(z) is not guaran-
teed for any MIMO-FIR channel H(z). A sufficient and necessary
condition for existing an MIMO-FIR equalizer that can equalize
an MIMO-FIR channel is given below [9], which is weaker than
that H(z) is irreducible.

Existence Condition
The greatest common divisor (GCD) of all N � N determi-

nants of H(z) is a monomial with regard to z�1, i.e.,

GCDfj�Hi(z)j; i = 1; 2; :::; C
N
Mg = z

�l

for some l � 0. Where, �Hi(z)’s are N � N submatrices of
H(z). CN

M is the combination number of choosing N out of M .

Secondly, the existence of an MIMO-FIR equalizerE(z) does
not guarantee the existence of a such equalizer with any given de-
gree. There exists a lower bound for the equalizer degree. How-
ever, it is not easy to find a small lower bound, because the lower
bound depends on the characteristics of the MIMO-FIR channel
H(z). Per practical reasons, we suggest an empirical lower bound
NLh=(M �N)� 1. See [4] for further reference.

Thirdly, it has been found that an MIMO-FIR channel equal-
ization is not always guaranteed when the SOS of the processed
signals are the same as that of the transmitted signals. Never-
theless, this is guaranteed when the set of autocorrelation func-
tions of transmitted signals, frsn(�) = E(sn(t)s

�

n(t � �))jn =

1; 2; � � � ; Ng, is linearly shift-independent with length L [8], i.e.,

Linear Shift-Independence Condition
The set of shifted autocorrelation functions of the transmitted

signals, frsn(� � l)jn = 1; 2; � � � ; N ; l = 0;�1; � � � ;�Lg, is
linearly independent.

The following theorem is the fundamental of the AM method.

Theorem 1
Assume n(t) = 0 and frsn(�)jn = 1; 2; � � � ; Ng is linearly

shift-independent with length L. Then y1(t) = d1z
�l1 [s1(t)]

if and only if y1(t) has the same autocorrelations as does s1(t).
(proof omitted)

4. PRINCIPLE

The AM method consists of two steps: (1) designing a diagonal
pre-filter F(z) such that the autocorrelation functions of the trans-
mitted signal s(t) satisfy the linear shift-independence condition;
and (2) designing an MIMO-FIR equalizer E(z) such that the au-
tocorrelations of the transmitted signal s(t)match those of the pro-
cessed signal y(t).

The pre-filtering effects can be reversed after the transmitted
signals are separated.



4.1. Pre-filters

It is an art to design pre-filters. Two pre-filters are given below due
to their simplicities in structure.

The two-tap FIR pre-filter is given by,

F(z) = diag(1; 1 + bz
�(L+1)

; :::; 1 + bz
�(N�1)(L+1)

)

where 0 < jbj < 1. This pre-filter is similar to the correlative
filter introduced by [13]. It is considered the simplest FIR pre-
filter because each filter has only two taps (except the first one)
and only one parameter is needed.

The homogeneous FIR pre-filter is given by

F(z) = diag(f1(z); f2(z); � � � ; fN (z))

in which each filter is defined as,

fn(z) =

m6=nY
m=1;N

(1� bmz
�(L+1)

)

where, bm 2 R, 0 < jbmj < 1 for m = 1; 2; � � � ; N , and b1 6=

b2 6= � � � 6= bN .
The simplest blind MIMO-FIR equalization problem is to sep-

arate two signals. In this special case, there is a general criterion
of designing FIR pre-filters, as shown by the following theorem.

Theorem 2
The pre-filter F(z) = diag(f1(z); f2(z)) makes the autocor-

relation functions of s1(t) and s2(t) linearly shift-independent
with length L, if f1(z) and f2(z) have no common zeros and if
at least one of their degrees is greater than L. (proof omitted)

4.2. Optimal Zero-Forcing Equalizer

The noise issue needs to be addressed in the optimal zero-forcing
equalizer design. Let an M(Le + 1) � 1 vector e1 stand for a
zero-forcing equalizer for the transmitted signal s1(t). We have,

y1(t) = d1s1(t� l1) + �e
T
1 �n(t)

where,
�e1 = [~eT11; ~e

T
12; � � � ; ~e

T
1M ]T

�n(t) = [~nT1 (t); ~n
T
2 (t); � � � ; ~n

T
M (t)]T

in which

~e1m = [e
(0)

1m; e
(1)

1m; � � � ; e
(Le)

1m ]T

~nm(t) = [nm(t); nm(t� 1); � � � ; nm(t� Le)]
T

for m = 1; 2; � � � ;M . Calculating the autocorrelations on both
side, we have,

ry1(k) = rs1(k) + �e
T
1D(k)�e

�

1 (1)

where, D(k) is an M(Le + 1)�M(Le + 1) matrix,

D(k) = diag(�
2
1J

k
; �

2
2J

k
; � � � ; �

2
MJ

k
)

in which J is an (Le + 1)� (Le + 1) shifting matrix,

J =

2
6664

0 0 � � � 0

1 0
. . .

...
...

. . .
. . . 0

0 � � � 1 0

3
7775

Note that J�k stands for (JT )k for k > 0 and J0 = I. Let k = 0

in Eq(1), we have,

ry1(0) = rs1(0) + �e
T
1D(0)�e

�

1

where, the left side is the power of the processed signal y1(t), a
recovered version of the transmitted signal s1(t); the first term at
the right side is the power of the transmitted signal s1(t); and the
second term at the right side is the noise power contained in the
recovered signal y1(t).

Clearly, the optimal zero-forcing blind equalizer is the one that
minimizes the noise power contained in the recovered signal in
addition to matching the autocorrelations between the recovered
signal and the transmitted signal (after subtracting the difference
caused by the noise power). That is, the optimal blind equalizer for
recovering s1(t) is a solution to e1 that minimizes the following
two objectives simultaneously,

J1(�e1) =
PN(2L+1)=2

k=0
j�eT1R�x(k)�e

�

1 � rs1(k)� �eT1D(k)�e�1j
2

J2(�e1) = �eT1D(0)�e�1
(2)

where, R�x(k) is the autocorrelation matrix regarding a vector sig-
nal �x(t),

R�x(k) = E(�x(t)�x
H
(t� k))

and the vector signal �x(t) is arranged from the received signal
x(t),

�x(t) = [~x
T
1 (t); ~x

T
2 (t); � � � ; ~x

T
M(t)]

T

in which

~xm(t) = [xm(t); xm(t� 1); � � � ; xm(t� Le)]
T

for m = 1; 2; � � � ;M .
Since the noise variance [�21 ; �

2
2 ; � � � ; �

2
M ]T is unknown, we

turn them into variables to be optimized,

�0 =
p

�eT1D(0)�e�1
�k = �eT1D(k)�e�1 for k = 1; 2; � � � ; Le

Thus, the minimization problem (2) is equivalent to,

Minimize J(�e1; �0; �1; � � � ; �Le)
Subject to �20 > j�1j; j�2j; � � � ; j�Le j

(3)

where,

J(�e1; �0; �1; � � � ; �Le ) = (1 + �20)
PN(2L+1)=2

k=0

j�eT1R�x(k)�e
�

1 � rs1(k)� �20Æ(k)�
PLe

l=1
�lÆ(k � l)j2

In practice, we typically have,

�
2
0 >> j�1j; j�2j; � � � ; j�Le j

Hence, the minimization problem (3) can be solved approximately
by minimizing the following objective,

J(�e1; �0) = (1+�
2
0)

N(2L+1)=2X
k=0

j�e
T
1R�x(k)�e

�

1�rs1(k)��
2
0Æ(k)j

2

(4)
The final minimization problem (4) can be easily solved using

an iterative gradient algorithm.



5. COMPUTER SIMULATION

A computer simulation is conducted to separate two transmitted
signals from five received mixtures. For the purpose of simplicity,
only real numbers are used.

In the simulation, two uncorrelated white random sequences
on [-1, 1] are generated as two source signals. They are filtered by
the following pre-filters respectively,�

f1(z) = 1� 0:3z4 + 0:5z5

f2(z) = 1 + 0:8z4 + 0:2z5

and then transmitted through the following MIMO-FIR channel,

H(z) =

2
664

(1� 0:89z)(1 + 0:20z) (1 + 0:18z)(1 + 0:76z)

(1 + 0:12z)(1 � 0:79z) (1 + 0:60z)(1 + 0:72z)

(1� 0:84z)(1 � 0:82z) (1� 0:32z)(1 + 0:50z)

(1 + 0:86z)(1 + 0:81z) (1� 0:74z)(1 � 0:83z)
(1� 0:38z)(1 � 0:08z) (1 + 0:27z)(1 � 0:57z)

3
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The received mixtures are equalized by the following MIMO-FIR
equalizer,

E(z) = E0 +E1z

which is solved by an iterative gradient algorithm using the SOS
of the received signals that are estimated from about 100 received
symbols. After the transmitted signals are separated, they are re-
versely filtered and then converted into hard symbols 1 or -1.

The BER vs. SNR curve is shown below, which is obtained
from 2� 105 test runs.
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Fig.2 BER performance for the AM method

6. CONCLUSIONS

The Autocorrelation Matching method is presented in this paper,
which is an SOS-based blind signal separation and channel equal-
ization technique for distributed MIMO communication systems.
It consists of two steps: (1) design a pre-filter such that each trans-
mitted signal has a distinct autocorrelation function and the auto-
correlation functions of all transmitted signals are linearly shift-
independent; and (2) design an MIMO-FIR equalizer that makes
the autocorrelation functions of the processed signals match those
of the transmitted signals. The AM method is based on a the-
oretic discovery, i.e., for transmitted signals with linearly shift-
independent autocorrelation functions, a processed signal is equal
to a transmitted signal up to a unitary factor and a delay if and
only if they have the same autocorrelation functions. An optimal
zero-forcing equalizer is developed to maximize the SNR for the

recovered transmitted signals. Some preliminary simulation re-
sults show that the BER in the recovered signal is about 3� 10�5

at the SNR = 15 dB. This method has the potential to be applied
to cellular wireless communications for the purpose of boosting
spectrum efficiency or suppressing co-channel interference.
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