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ABSTRACT

In this paper, the methods for use of prior information about mul-
tiple operating environments, in improving adaptive filter conver-
gence properties are discussed. More concretely, the gain selec-
tion, profiling and scheduling in steepest descent algorithms are
treated in detail. Work presented in this paper is an extension of
[1]. Two flavors of optimization are discussed: average descent
rate optimization and maximization of the minimum descent rate.
It is demonstrated, just as in the case of single channel optimiza-
tion, with no additional complexity a substantial increase of con-
vergence rate of steepest descent algorithms can be achieved. Fi-
nally, performance of the method is analyzed on the adaptive linear
equalizer design for local area networks.

1. INTRODUCTION

In this section steepest descent adaptive filtering and basic single
channel update profiling methods are described.

1.1. Steepest Descent Algorithms

Due to their low implementational cost and good numerical prop-
erties, steepest descent techniques play important role in modern
signal processing applications. A typical application environment
for steepest descent techniques in NC and EC is given in Figure 3.

The convergence of the iterative algorithm is governed by the
difference equation:

vn+1 = (I� �Rxx)vn
vn = fn � f�

(1)

wheref represents the filter coefficient vector,v represents the fil-
ter coefficient error, andRxx denotes the autocorrelation matrix of
the signal . Stability of the SD adaptation can be derived from rela-
tionship (1) which indicates that in order to ensure the stability of
the algorithm one needs to choose the adaptation step to be within
bounds:0 < � < 2

�max(Rx)
. Larger values of the adaptation step

lead to faster convergence, but increase the residual error and may
potentially render the algorithm unstable. In practical application-
s, such problems are usually resolved with adaptive change of the
adaptation step size [2], or with a conservative choice of fixed step
size[3].

Interestingly the convergence speed of the steepest descent al-
gorithm is governed by the smallest eigenvalue of the correlation
matrix [8] via:

Fig. 1. Common adaptive system adapting to minimize the resid-
ual error.

�n �
1

��n
; (2)

where,�n is the time constant corresponding to the eigenvalue�n.
Equation (2) indicates that while the adaptation step-size is limited
by the reciprocal of the largest eigenvalue, the smallest eigenval-
ue is the one that governs the convergence of the slowest mode.
The relationships (1) and (2) expose the fundamental problem of
application of steepest descent procedures to problems with large
eigenvalue disparity.

1.2. Update Profiling

A practically more appealing version of steepest descent procedure
is the least-mean-square (LMS) algorithm. In the LMS algorithm
the gradient is substituted by its instantaneous estimate:

r = "kxk = rdx; k � xkx
0

kf � (dk � x
0

kf)xk (3)

Inclusion of the 3 in the gradient update yields:

fn+1 = fn + �"nxn: (4)

Definition: Graded Update Gains(or Graded Updates) refers to
the application of different gain to every coefficient (tap) in the
vector implementation of the steepest descent based algorithm.



In graded update version therefore, every coefficient of the fil-
ter f has a different update rate�k. Thus (5) changes to:

fn+1 = fn +M"nxn: (5)

whereM is the diagonal matrixM = diag(�1; �2; : : : ; �N ), and
the error evolution equation (1) becomes:

vn+1 = (I�MRxx)vn (6)

Most of authors dealing with this problem so far [5, 6] con-
centrated on the expected value of filter coefficients and adapted
coefficients of larger magnitude with larger update gains. In this
paper it is shown that contrary to the popular belief, optimal graded
update gains mayonly coincidentally be connected to the expect-
ed value of coefficients.

The basic idea behind the solution of the graded updates prob-
lem is minimization of the expected error variance at every itera-
tion. This optimization procedure yields (possibly time varying)
set of gainsM which allow fastest descent down the expected
quadratic bowl.

In case when initial error statistics is unknown, or disregarded,
the designer can then adopt the maximum entropy approach and
assume white statistics of initial error. LetQ be the matrix that
diagonalizes ( 6):

~vn+1 = Qvn+1 = Q (I�MRxx)Q
0

Qvn = �~vn (7)

Proposition 1: If x is white (i.e. Efxx0g = �2I, andQ is an
orthogonal matrix, then~x = Qx is also white.
Proof: Ef~x~x0g = QEfxx0gQ0

= �2QQ0

= �2I, QED.

Via Proposition 1, ifv is assumed to be white, then~v is al-
so white. Expected value of the norm of~vn+1 is then minimized
when sum of squared eigenvalues (on the diagonal of)� is mini-
mized, since:

Ef~v0n+1~vn+1g = Efv0�2vg =PN

i=1
�2iEf~v

2
n(i)g =

�2~vn
PN

i=1
�2i

(8)

The solution to this problem corresponds to the optimalM

which is the diagonal approximation to the inverse of theRxx in
Frobenious norm:

M = argminkI�MRxxkF (9)

An alternative solution to the problem can be reached if the
initial error statistics is known. To derive the optimal graded up-
date gains matrixM, from (6) first compute the dynamics of the
filter error normv0nvn:

v
0

n+1vn+1 = v
0

n+1 (I�MRxx)
0

(I�MRxx)vn+1 (10)

In [1] it was shown that:

�2v[n + 1] = Efv0n+1vn+1g

= Tr fRvvg�

Tr f(2R0

xxM�RxxR
0

xxMM)Rvv[n]g
(11)

Noting thatTr fRvvg = Efv0n+1vn+1g = �2v[n], we form the
problem of findingM as an optimization problem:

max
M diagonal

k�
2
v [n]� �

2
v [n+ 1]k (12)

Maximization of the difference between two subsequent errors en-
sures the maximization of the convergence rate of the algorithm.
Cost function in (12) can be rewritten:

min
M diagonal

Tr
�
Rvv [n]RxxR

0

xxMM� 2Rvv [n]R
0

xxM
	

(13)

Solution of this optimization problem is can be obtained by follow-
ing optimization strategy [1, Proposition 3]: Consider the follow-
ing optimization strategy for problem in (12): first find the optimal
solutionM = R�1

xx , and then find the matrixM closest to the
R�1

xx in Frobenious sense. Such matrix will be the optimal con-
strained solution of problem in (12).

In other words, the autocorrelation matrixRxx needs to be
inverted, and its diagonal will represent the optimal update grading
profile.

The fundamental difference between two solutions is in the
optimization target. Optimization criteria in 8 minimizes sum of
squared eigenvalues of matrix productMRxx, while optimization
criteria in 12 minimizes the maximum eigenvalue of the matrix
productMRxx. Clearly, from the speed of convergence perspec-
tive later optimization method is superior.

It is important to note, that above suggested solution is a close
cousin of the Newton’s algorithm based descent strategies [3]:

fn+1 = fn + �R
�1
xx "nxn (14)

While full Newton’s algorithm based descent strategies complete-
ly decouple andequalizerates of descent due to different modes,
limitations to the diagonal matrix would achieve this only partially.
Level of achieved benefit depends on the level of the input signal
correlation.

2. MULTIPLE OPERATING ENVIRONMENT OPTIMAL
UPDATE PROFILES

Main reason for using adaptive filters is the unknown and/or dy-
namic nature of the operating environment. In many cases, though,
a designers may have a rough idea of operating environments adap-
tive systems may face. A good example of such case is a set of
standard loops for wireline communications. When operating en-
vironment space can be characterized by representative samples
of operating environments it is of interest to optimize the conver-
gence performance of the steepest descent algorithms over such
characterization. In this section two methods of multiple operating
environment optimization: average convergence rate optimization
and maximization of slowest convergence rate.

2.1. Average Convergence Rate Maximization

Let operating environment models be indexed from1 to L. Fur-
thermore, let them be characterized by the signal autocorrelation
matricesR(k)

xx . The set of error vectorv(k)n corresponding to each
case of steepest descent application in environmentk is defined as
in ( 1) and ( 6):

v
(k)
n+1 = (I�MR

(k)
xx )v

(k)
n (15)



A super-vector of adaptation error can then be created to include
all environments:

vn+1 =

2
6664

v
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n+1

v
(2)
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...
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(16)

whereRM represents the composite matrix with block diagonal
sub-matricesMR

(k)
xx . The problem in ( 16) is similar to a single

channel optimal profile problem. Solution which minimizes sum
of squared eigenvalues can be computed by choosingM which
gives minimizeskI �RMkF . Solution can be computed in the
closed form by differentiation ofkI�RMkF with respect to di-
agonal entriesmj of matrixM:

mj =

PL

k=1
r
(k)

jjPL

k=1

PN

i=1
r
(k)2

ij

(17)

wherer(k)ij represents(i; j) element ofR(k)
xx , andN is the dimen-

sionality ofM.

2.2. Maximization of the Slowest Convergence Rate

Using the super-vector notation of ( 16) and following the method
of maximization of the error vector norm descent. Having in mind
the diagonal structure ofMR andM, it is possible to find a per-
mutation matrixP such that:

~vn+1 = Pvn+1 = P(I�RM)P
0

Pvn = (I� ~M~R)~vn (18)

where ~M is a block constant diagonal matrix (i.e. it has firstN

diagonal elements equal tom1, secondN diagonal entries equal
tom2, etc.) and~R = PRP0. Then, using the fact that the trace of
a scalar is equal to the scalar and linearity of the expectation and
trace operators derivation follows similarly as in Section 2:

�2~v[n + 1] = Ef~v0n+1~vn+1g

= E

n
Tr

n
~v0n
�
I� ~M~R

�
0
�
I� ~M~R

�
~vn

oo

= Tr

n�
I� ~M~R

�
0
�
I� ~M~R

�
R~v~v[n]

o

= Tr fR~v~vg [n]�

Tr
��

2~R0M� ~R~R0 ~M ~M
�
R~v~v[n]

	
(19)

Maximization of the difference between two subsequent errors en-
sures the maximization of the convergence of the slowest mode
over all operating environments. Cost function can then be rewrit-
ten as:

min
M diagonal

and block�constant

Tr
�
R~v~v[n]~R~R

0 ~M ~M� 2R~v~v[n]~R
0 ~M
	

(20)
Just as in Section 2, and [1, Proposition 3], the solution of this
problem is matrixMwhich most closely approximates the inverse
of ~R and satisfies the block-constant and diagonality constraints.

Given the convexity of constraints, following optimization strategy
yields optimal grading profile: Inverse of~R is computed, and it’s
diagonal is averaged in sections ofN elements. Thus, a projection
of ~R�1 on the constraint space is produced. MatrixM is therefore
made up of diagonal elements:

mi =
1

N

NX
j=1

~r(i�1)N+j (21)

where~rk is kth diagonal element of~R.

3. EXAMPLES AND CONCLUSIONS

As an example of update profile use, consider equalization prob-
lem for local area network loops. Let the environment model space
be represented by three channels: 100m Category 5 (CAT5) loop,
50m CAT5 loop, and 25m CAT5 loop. Channel responses nor-
malized to unit energy (thus mimicking commonly used adaptive
gain control) and shifted for delay are shown in Figure 2. Dif-
ferent channel spectral characteristics cause differences in auto-
correlation matrices, thus warranting a conservative adaptive fil-
ter design. Matrix with largest eigenvalue spread then determines
the update rate of classical steepest descent algorithms. In this
case, 100m loop would determine the update rates. For brevity
we demonstrate only performance of algorithm for maximization
of the convergence rate of the slowest mode. Figure 3 shows the
update grading profiles of 5 tap equalizer computed for each loop
separately (solid = 100m loop, dashed = 50m loop, and dotted =
25m loop) as well as the joint grading profile (dash-dotted). Figure
4 shows the expected evolution distance in dB between comput-
ed filter coefficientsf and optimal filter coefficientsf� for con-
sidered channels. Maximum update rate guaranteeing stability of
over all channels is used for both graded and non-graded updates.
Obviously for the loop with largest eigenvalue disparity the filter
is slowest to converge to the optimal solution. Multiple channel
grading profile in this case has largest impact on the convergence
and increases convergence rate considerably. For 50m loop, grad-
ing profile increases convergence rate a bit, and for 25m loop it
decreases convergence rate. However, 100m loop being the lim-
iting factor, overall performance is significantly improved. It is
important to note that (in this case) equalizer mean square error
performance depends not only on distance betweenf andf� but
also on sensitivity of the error (i.e.steepness of the quadratic bowl
around the optimal solution). Hence, this method dramatically im-
proves adaptation properties in precision sensitive cases.
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Fig. 2. Channel impulse responses under consideration under con-
sideration: solid = 100m CAT5 loop, dashed = 50m CAT5 loop,
and dotted =25m CAT5 loop.
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Fig. 3. Computed grading profiles for 3 channels, and slowest
mode optimizing profile.
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