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ABSTRACT

In this paper, the methods for use of prior information about mul-
tiple operating environments, in improving adaptive filter conver-
gence properties are discussed. More concretely, the gain selec-
tion, profiling and scheduling in steepest descent algorithms are d(n)
treated in detail. Work presented in this paper is an extension of

[1]. Two flavors of optimization are discussed: average descent /7

rate optimization and maximization of the minimum descent rate.

It is demonstrated, just as in the case of single channel optimiza- x(n)
tion, with no additional complexity a substantial increase of con-
vergence rate of steepest descent algorithms can be achieved. Fi-
nally, performance of the method is analyzed on the adaptive linear
equalizer design for local area networks.

q
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1. INTRODUCTION

In this section steepest descent adaptive filtering and basic singlerig. 1. Common adaptive system adapting to minimize the resid-
channel update profiling methods are described. ual error.

1.1. Steepest Descent Algorithms

Due to their low implementational cost and good numerical prop- Tn R L, 2)
erties, steepest descent techniques play important role in modern . . An . .

signal processing applications. A typical application environment where',rn IS the t_|me constant porrespondlng_ to the elg_env_al,;,_Le .
for steepest descent techniques in NC and EC is given in Figure 3 Equation (2) indicates that while the adaptation step-size is limited

The convergence of the iterative algorithm is governed by the by t_he reciprocal of the largest eigenvalue, the smallest eigenval-
difference equation: ue is the one that governs the convergence of the slowest mode.

The relationships (1) and (2) expose the fundamental problem of
application of steepest descent procedures to problems with large

Vn =(I- sz Vn . . .
1 == uR,.) (1) eigenvalue disparity.

v, =f, — f*

wheref represents the filter coefficient vecterrepresents the fil-
ter coefficient error, anR .., denotes the autocorrelation matrix of
the signal . Stability of the SD adaptation can be derived from rela- A practically more appealing version of steepest descent procedure
tionship (1) which indicates that in order to ensure the stability of is the least-mean-square (LMS) algorithm. In the LMS algorithm
the algorithm one needs to choose the adaptation step to be withirthe gradient is substituted by its instantaneous estimate:
bounds:0 < u < #(Rw). Larger values of the adaptation step
lead to faster convergence, but increase the residual error and may
potentially render the algorithm unstable. In practical application-
s, such problems are usually resolved with adaptive change of the  Inclusion of the 3 in the gradient update yields:
gi(iip[);?tlon step size [2], or with a conservative choice of fixed step fot = £ + pEnXn. @)

Interestingly the convergence speed of the steepest descent alPefinition: Graded Update Gaingor Graded Updates) refers to
gorithm is governed by the smallest eigenvalue of the correlation the application of different gain to every coefficient (tap) in the
matrix [8] via: vector implementation of the steepest descent based algorithm.

1.2. Update Profiling

V = EkXk = Tdx, k — kakf ~ (dk — X;vf)xk (3)



In graded update version therefore, every coefficient of the fil-

ter f has a different update rate.. Thus (5) changes to: lloo[n] — oo[n +1]|| (12)

max
M diagonal

foy1 = fn + Menxn. (5) Maximization of the difference between two subsequent errors en-
. . . . sures the maximization of the convergence rate of the algorithm.
whereM is the diagonal matri = diag(p1, pi2, .., ), and Cost function in (12) can be rewritten:
the error evolution equation (1) becomes:
. i !
vas1 = (I— MR,,)va ©) o Jin Tr {Ryu[n]Roo R}, MM — 2Ry, [n]R,, M} (13)

Most of authors dealing with this problem so far [5, 6] con-
centrated on the expected value of filter coefficients and adapted
coefficients of larger magnitude with larger update gains. In this Solution of this optimization problem is can be obtained by follow-
paper it is shown that contrary to the popular belief, optimal graded ing optimization strategy [1, Proposition 3]: Consider the follow-

update gains magnly coincidentally be connected to the expect-
ed value of coefficients.

ing optimization strategy for problem in (12): first find the optimal
solutonM = R}, and then find the matriM closest to the

The basic idea behind the solution of the graded updates prob-R.; in Frobenious sense. Such matrix will be the optimal con-
lem is minimization of the expected error variance at every itera- strained solution of problem in (12).

tion. This optimization procedure yields (possibly time varying)
set of gainsM which allow fastest descent down the expected
quadratic bowl.

In case when initial error statistics is unknown, or disregarded,

In other words, the autocorrelation matik,, needs to be
inverted, and its diagonal will represent the optimal update grading
profile.

The fundamental difference between two solutions is in the

the designer can then adopt the maximum entropy approach andptimization target. Optimization criteria in 8 minimizes sum of

assume white statistics of initial error. L€ be the matrix that
diagonalizes ( 6):

Vnr1 = Qv, 1 = QI —MR..) QQv, =Av, (7)

Proposition 1: If x is white (i.e. E{xx'} = ¢’I, andQ is an
orthogonal matrix, thet = Qx is also white.
Proof: E{xx'} = QE{xx'}Q' = ¢’QQ’ = ¢°1, QED.

Via Proposition 1, ifv is assumed to be white, thanis al-
so white. Expected value of the normef: is then minimized
when sum of squared eigenvalues (on the diagonalAd§ mini-
mized, since:

E{v'A’v} =

S N E{(0)
- N -

U‘g’n Zi:l X

The solution to this problem corresponds to the optifwhl

which is the diagonal approximation to the inverse of Rig, in
Frobenious norm:

E{;’:H—l{’n+l} =

(8)

M = argmin||I — MR, | F )

An alternative solution to the problem can be reached if the
initial error statistics is known. To derive the optimal graded up-
date gains matrisM, from (6) first compute the dynamics of the
filter error normv, v, :

Vi41Vnt1 = Vg (I— MRep) (I—= MRoo) Vg1 (10)
In [1] it was shown that:
oAn+1] = E{vipveii)}
= Tr{Ru,}—
Tr {(2R,,M — Rz R.,MM) Ry, [n]}
11)

Noting thatTr {R,,} = E{v, 1Vni1} = o2[n], we form the
problem of findingM as an optimization problem:

squared eigenvalues of matrix proddMiR ..., while optimization
criteria in 12 minimizes the maximum eigenvalue of the matrix
productMR..,.. Clearly, from the speed of convergence perspec-
tive later optimization method is superior.

It is important to note, that above suggested solution is a close
cousin of the Newton'’s algorithm based descent strategies [3]:

(14)

While full Newton'’s algorithm based descent strategies complete-
ly decouple andkqualizerates of descent due to different modes,
limitations to the diagonal matrix would achieve this only partially.
Level of achieved benefit depends on the level of the input signal
correlation.

fn+1 = fn + MR;;Enxn

2. MULTIPLE OPERATING ENVIRONMENT OPTIMAL
UPDATE PROFILES

Main reason for using adaptive filters is the unknown and/or dy-
namic nature of the operating environment. In many cases, though,
a designers may have a rough idea of operating environments adap-
tive systems may face. A good example of such case is a set of
standard loops for wireline communications. When operating en-
vironment space can be characterized by representative samples
of operating environments it is of interest to optimize the conver-
gence performance of the steepest descent algorithms over such
characterization. In this section two methods of multiple operating
environment optimization: average convergence rate optimization
and maximization of slowest convergence rate.

2.1. Average Convergence Rate Maximization

Let operating environment models be indexed frono L. Fur-

thermore, let them be characterized by the signal autocorrelation
matriceng;). The set of error vectovgf) corresponding to each
case of steepest descent application in environrhéntlefined as

in (1) and ( 6):

viil = (- MR{)v (15)



A super-vector of adaptation error can then be created to includeGiven the convexity of constraints, following optimization strategy

all environments: yields optimal grading profile: Inverse & is computed, and it’s
W diagonal is averaged in sections/@felements. Thus, a projection
Viti1 of R™! on the constraint space is produced. Malvixis therefore
v, made up of diagonal elements:
Vn41 = . =1I- RMVn =
: 1 &
L ~
- by w m 5 @
j=1
MRS ... 0 M !
v ~
=I- : : n wheref, is k" diagonal element oR..
0o ... MRYY (L)
Vn

whereRm represents the composite matrix with block diagonal
sub-matriceMR). The problem in ( 16) is similar to a single
channel optimal profile problem. Solution which minimizes sum as an example of update profile use, consider equalization prob-

3. EXAMPLES AND CONCLUSIONS

of squared eigenvalues can be computed by choasing/hich lem for local area network loops. Let the environment model space
gives minimizes|I — Rm||». Solution can be computed in the  pe represented by three channels: 100m Category 5 (CAT5) loop,
closed form by differentiation ofl — R ||~ with respectto di-  50m CAT5 loop, and 25m CATS loop. Channel responses nor-
agonal entriesn; of matrix M: malized to unit energy (thus mimicking commonly used adaptive
L gain control) and shifted for delay are shown in Figure 2. Dif-
m; k=1"jj a7 ferent channel spectral characteristics cause differences in auto-

correlation matrices, thus warranting a conservative adaptive fil-

ter design. Matrix with largest eigenvalue spread then determines
the update rate of classical steepest descent algorithms. In this
case, 100m loop would determine the update rates. For brevity
we demonstrate only performance of algorithm for maximization

of the convergence rate of the slowest mode. Figure 3 shows the
update grading profiles of 5 tap equalizer computed for each loop

Using the super-vector notation of ( 16) and following the method Separately (solid = 100m loop, dashed = 50m loop, and dotted =
of maximization of the error vector norm descent. Having in mind 25m loop) as well as the joint grading profile (dash-dotted). Figure

the diagonal structure MR andM‘ itis possib|e to find a per- 4 shows the expected evolution distance in dB between Comput-
mutation matrixP such that: ed filter coefficientsf and optimal filter coefficientg™ for con-

sidered channels. Maximum update rate guaranteeing stability of
Vni1 =Pv,y1 = P(I—Rm)P'Pv, = (I- MR)V, (18) over all channels is used for both graded and non-graded updates.
B Obviously for the loop with largest eigenvalue disparity the filter
whereM is a block constant diagonal matrix (i.e. it has fiPét is slowest to converge to the optimal solution. Multiple channel
diagonal elements equal in:, secondN diagonal entries equal  grading profile in this case has largest impact on the convergence
toms, etc.) andR = PRP’. Then, using the fact that the trace of ~and increases convergence rate considerably. For 50m loop, grad-
a scalar is equal to the scalar and linearity of the expectation anding profile increases convergence rate a bit, and for 25m loop it

) N (k)2
Zk:l Zi:lrij

wherer("” representsi, j) element ofR, andN is the dimen-

sionality of M.

2.2. Maximization of the Slowest Convergence Rate

trace operators derivation follows similarly as in Section 2: decreases convergence rate. However, 100m loop being the lim-
) L iting factor, overall performance is significantly improved. It is
osln+1] = E{¥,1Vnt1} important to note that (in this case) equalizer mean square error
- E {Tr {x"z’n (1- 1\7Ift)' (I- MR) Gn}} performance depends not only on distance betweand f* but
- o also on sensitivity of the error (i.e.steepness of the quadratic bowl
= Tr { (I — MR) (I - MR) m[n]} around the optimal solution). Hence, this method dramatically im-
= Tr{Rs}[n]— proves adaptation properties in precision sensitive cases.
Tr { (2R'M — RR'MM ) R3[n] }
19)
Maximization of the difference between two subsequent errors en-
sures the maximization of the convergence of the slowest mode 4. REFERENCES
over all operating environments. Cost function can then be rewrit-
ten as: [1] Milisavljevit, M., "Optimal Update Profiling for Steepest
) o - Descent Algorithms”, Proceedings of DSP2000 Workshop,
Lmin o Tr{Ros[nRR'MM — 2Rs; [n]R'M Hunt, TX, October 2000.
and block—constant 20) [2] Bishop, C.M., "Neural Networks for Pattern Recognition”,

Just as in Section 2, and [1, Proposition 3], the solution of this Clarendon Press - Oxford 1995.
problem is matriX¥MI which most closely approximates the inverse [3] Clarkson, P. M., "Optimal and Adaptive Signal Processing”,
of R and satisfies the block-constant and diagonality constraints. CRC Press 1993.



= o o o o
o ) ~ © ©

impulse response
I
=

0.3

0.2

0.1

Fig. 2. Channel impulse responses under consideration under con

2 4 6 8 10 12 14
sample at 125 MHz

sideration: solid = 100m CAT5 loop, dashed = 50m CATS5 loop,

-2000

Comparison of regular and graded SD algorithms

0 \
\N 100m loop
™ TT—
—
-400
~600 50m loop

o 800" \
T N
IS .
T -1000
5 25m loop
& N

-1200 .

.
N
-1400 N
\\
\\
-1600 - N
\\
N
.
-1800 - N

0

I I I I I )
500 600 700 800 900 1000
Iteration number

I I I I
100 200 300 400

Fig. 4. Convergence towards optimal solution with updates graded

for multi-channel use. Solid lines = graded updates, dotted lines =
scalar update.

and dotted =25m CAT5 loop.

8, pp. 380-385, July 1994,

[7] Rupp, M. "Bursting the LMS Algorithm”, IEEE Transac-
tions on Signal Processing, Vol. 43, No. 10, October 1995.

[8] Widrow, B. and Stearns, S.D., "Adaptive Signal Process-
ing”, Engelwood Cliffs, N.J. Prentice Hall 1985.

1
0.9r -
/
/
7
- 0.8 // 25m loop grading i
Do
o /
u / \ N
= /
8 / 50m loop grading \\
=3 / R
£07+ , il
2 \
g / ! \ \
>
B ! . .
2 multiple channel grading
3
T 06 4
/ \
\
o 100m loop grading
.5
04 I I I I I I I

15 2 25 3 35 4 45 5
filter tap

Fig. 3. Computed grading profiles for 3 channels, and slowest
mode optimizing profile.

(4]

(5]

(6]

Golub, G. and Van Loan, C., “Matrix Computations”, Johns
Hopkins 1996.

Makino, S., Kaneda, Y., Koizumi, N., “Exponentially

Weighted Stepsize NLMS Adaptive Filter Based on Statis-
tics of a Room Impulse Response”, IEEE Transactions on
Speech and Audio Processing, Vol. 1, No. 1, January 1993.

McCaslin, S. and Van Bavel, N., “Effects of Quasi-Periodic
Training Signals on the Performance of Acoustic Echo Can-
cellers”, Annales des Telecommunications, Vol. 49, No. 7-



