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ABSTRACT

In real-time video communications, the rate control strategies
must be utilized to satisfy the end-to-end delay and prevent the
encoding buffer from over/underflow. In other words, to acquire
the best possible video quality with a minimal quality variation
in the playback video, an accurate Rate-Distortion (R-D) model
of the video source is critical in optimizing the bit allocation for
video coding. In the paper, an Exponential Functions based R-D
model is proposed for Intra-coded frames in video coding.
Numerous experiments have consistently shown that the
proposed model outperforms other popular R-D models in terms
of both the estimation accuracy and computation complexity,
making it suitable for rate control in real-time video coding.

1. INTRODUCTION

Real-time visual communications is becoming increasingly
popular with the advances in video compression and network
technology. To satisfy the end-to-end delay and prevent the
encoding buffer from over/underflow in real-time visual
communications systems, rate control strategies are always
utilized [1, 5]. In other words, to acquire the best possible video
quality with a minimal quality variation in the playback video,
an accurate estimation of the rate-distortion characteristics of the
video source is critical in optimizing the bit allocation for video
encoding. Especially, in a forward rate control system, if there
were a large estimation error in one frame, it would have bad
influence on the bit allocation for following frames, producing
uneven video quality. In order to predict the output bit-rate and
the related distortion of the encoder at the given coding
parameters - quantization scales, for example - it is necessary to
build an accurate source model to estimate the Rate-Distortion
(R-D) characteristics of the input data. The more accurate the
model, the better the bit allocation.

For still images or Intra-coded video frames, the R-D
characteristics are difficult to acquire using closed-form models.
Some traditional R-D models assume that the input data is
Gaussian, Laplacian, or generalized Gaussian distributed.
However, due to the non-stationary characteristics of the image
signal, the accuracy of these parametric models is often too low
to be useful for optimized rate control in video coding [1,3].
More advanced R-D models, such as the Quadratic model and
the Cubic Interpolation model, are developed based on a priori

knowledge of the Rate-Distortion characteristics of image
signals, with the model parameters being derived from the actual
image to be encoded [1, 2]. However, it is observed that large
estimation errors may occur when the Quadratic model is used
to estimate the bit-rate at small quantization scales (QUANT),
which makes the model unsuitable for high bit rate video
coding. Furthermore, while the Cubic model may provide more
accurate estimation of R-D characteristics for the encoded
image, its computational complexity in obtaining the R-D data
at a reasonable number of control points (eight, for instance) is
often too high to be feasible in real-time video coding.

In this paper, we propose an Exponential Functions-based
R-D model for the estimation of the R-D characteristics of the
images to be encoded. The proposed model is similar to the
Cubic Interpolation model in that they both employ control
points followed by estimation of the R-D curve through
interpolation. The two differ in that our method can achieve
comparable estimation accuracy using considerably less number
of control points (i.e., three), which significantly reduces the
computational complexity of the method and makes it suitable
for real-time video coding.

The paper is organized as follows. In section 2, the
exponential functions-based R-D model for intra-coded video
frames is explained in detail. In section 3, the performance of
the proposed model is compared to two other models. The
computational complexity of the model is analyzed in section 4
to demonstrate that the proposed method can be used for real-
time video coding. Some conclusions of the paper are provided
in the final section.

2. EXPONENTIAL FUNCTIONS BASED
RATE-DISTORTION MODEL

In high bit-rate video coding, the quantization scales (QUANT)
are changed to control the video encoding rate (R) and the
corresponding encoding distortion (D) of each frame. An
accurate estimation of the R-D relationship is of vital
importance for achieving guaranteed end-to-end delay and
smooth video playback. In this paper the relationship between R
and QUANT is estimated using a novel exponential functions
based model. The relationship between D and QUANT is
derived via interpolation from the actual distortions of the
encoded image at the QUANT values chosen for the R-QUANT
estimation process.
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Figure 1. Exponential functions based R-Q model

2.1 Rate- QUANT model

Some typical image Rate-QUANT (R-Q) curves are shown in
Figure 1 (a). It is observed that the R-Q curves have strong non-
linearity at small QUANT values (e.g., Q < 15). To analyse the
characteristics of the R-Q curves, the Prony curve-fitting method
is employed, which can fit any curve using a combination of N
exponential functions. That is, we can build a function F(Q)

F(0)= ﬁcc;efl(n) xexp(—Coef2(n)xQ) (N <=31) (1)

n=l1

such that R(Q.)= F(0,),

measures. In our experiments, the Minimizing Absolute
Maximum Error (MindbsMax) principle is employed for curve
fitting. The 2*N coefficients of the N exponential functions can
be derived from a set of linear equations, each corresponding to
the actual R-Q data at a particular QUANT value (from 1 to 31).

Through our experiments we find that three exponential
curves (Fun-1, 2, and 3 in Figure 1) are sufficient to accurately
fit the original R-Q curve. To acquire the coefficients of these
three exponential curves, we have to use the actual R-Q data
obtained at all QUANT values (1 <= Q <= 31). Such brute-force
approach, however, requires that the video frame must be
encoded and decoded at every possible value of QUANT, which

Q, € {1,2,...,31} under some error

is not feasible in real-time processing. Instead, by observing the
characteristics of the three exponential curves, we have designed
a much simpler approach that dramatically reduces the
computational complexity for building the R-D model with only
minor performance loss.

Figure 1 shows that the first exponential function (Fun-1)
alone fits the R-Q data nicely at large quantization scales (e.g.,
QUANT>10), where the R-Q curve changes slowly. The second
exponential function (Fun-2) captures the fast-decreasing
characteristics of the R-Q data at smaller quantization scales
(e.g., QUANT<10). Finally, the third exponential function (Fun-
3) can be considered as compensation for the estimation errors
caused by Fun-1 and Fun-2. Intuitively, it is possible to use the
near-linear section (i.e., larger Q values) of the R-Q data to
derive Fun-I, and use the non-linear section (i.e., smaller Q
values) of the R-Q data to obtain Fun-2. Fun-3 can then be
derived based on the estimation errors generated by Fun-1 and
Fun-2. Finally, by adding the three functions together, we can
obtain an accurate estimation of the original R-Q data at all
possible quantization scales.

2.1.1 Estimation of the linear component of R-D curve

Our target function is
Funl(Q)= Coef1(1)* exp(-Coef2(1)*Q)  1<Q<31 (2)
Since Funl’s main contribution is at larger Q values (from 10 to
31), only two control points of Q1=10 and Q2=25 are used to
derive the function coefficients. The set of functions used are
Funl(10)=o*R(10)
The adjustable factor ¢ is used to compensate for the non-

linearity of the R-Q curve near Q1. The two coefficients of Fun-
1 can then be derived using the following formulas:

Coef2(1)=In ( Funl (Q1)/ Funl (Q2))/(Q2-Q1)  (4)

Coefl(1)=exp(0.5*(In(Funl(Q1)*Funl(Q2))
+Coef2(1)*(Q2+Q1))) %)

2.1.2 Estimation of the Non-linear component of R-D curve

Similarly, the coefficients Coef1(2) and Coef2(2) of Fun2(Q) is
determined using only two control points at Q1=10 and Q2=1.
The two functions used for deriving the coefficients are:

Fun2(10)=(1-o¢ )*R(10) (6)
Fun2(1)= B*R(1)- Funl(1)
where 3 serves the same purpose as (X . Using Equation (4,5),

two coefficients Coef1(2) and Coef2(2) are derived for Fun2(Q)
by replacing Funl with Fun?.

2.1.3 Compensation for the estimation error

With the same principle, the third exponential function (Fun3),
used to compensate for the estimation errors, is determined
using two control points at Q1 = 1 and Q2 = 25.

Fun3(1)=R(1)- B*R(1)- Funl(1) %)
Fun3(25)=0



Finally, we acquired the estimated R-Q curve F(Q)
F(Q)=Funl(Q)+Fun2(Q) +Fun3(Q) (8).

2.2 Distortion- QUANT model

The MSE (Mean Square Error) is widely used as the distortion
measurement in video coding. The relationship between
Distortion and QUANT can be simply interpolated from the
distortion values obtained by encoding the frame at the chosen
QUANT values (Q = 1, 10, and 25). Through experiments, we
find that the Cubic interpolation method is more accurate than
Spline interpolation for all tested video sequences, as evidenced
in Figure 2.

3. PERFORMANCE OF THE MODEL

The proposed method has been extensively experimented to
compare its performance with other well-known R-D models.
Test images include frames from video sequences such as
“Flower Garden” (720x288 size), “Mother & Daughter”
(320x288 size), and others. To test the performance of our
Exponential Functions-based R-D Model, in each experiment
we randomly select one frame from every sequence and encode
the frame using the Intra-code mode by an MPEG2 encoder. In
our experiments, the values O =95% and § =8% are empirically

determined for all sequences. The model’s performance may be
further improved if these two factors are adjusted adaptively
according to the bit rates at the chosen control points.

First, the Quadratic Rate Distortion Model is compared
[2]. Using the same original R-D data at Q={1, 10, 25}, we
calculate two coefficients @ and bl for quadratic polynomial
with the proposed equations in [2]. The results are shown in
Figure 3. It is evident that our method produces significantly
smaller errors for Q<15, while both methods are accurate
enough for large QUANT values. Apparently, the quadratic
polynomial model does not do a good job in matching the non-
linearity part (i.e., small quantization scales) of the R-D curve.

Secondly, the Cubic Interpolation Model is used for
performance comparison [1]. The Relative Error is defined as

Relative Error ‘Estimated _Value — Original _ Value‘ £100%
— = ‘ 0

Original Value
(10

Piecewise cubic polynomials are used to interpolate the bit rate
related to QUANT between the chosen control points. In Cubic
Interpolation, the control points of {1, 3, 5, 8, 13, 21, 31} are
used, as proposed in [1]. In our model, Q={1, 10, 25} are used
as control points. The results are listed in 7able 1. The results
show that our method achieves comparable prediction accuracy
with the significantly reduced number of control points. Less
control points means lower computational complexity of the
method, which is vital for its applicability in real-time video
coding. The computation complexity of our model, and the
feasibility of it being used for real-time video coding, will be
further discussed in the next section.
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Figure 2. Estimation of the Distortion-QUANT characteristics
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Figure 3. Comparison of the performance of our model with
Quadratic Rate-Distortion Model

4. ANALYSIS OF THE MODEL’S
COMPUTATION COMPLEXITY

The R-D data needed for computing the coefficients of the
exponential functions for a frame is obtained via actually coding
the video frame at the chosen control QUANT values. Due to
the computational complexity of the method, in real-time rate
control systems, the proposed R-D based rate control model is
only employed in estimating the R-D characteristics for the
Intra-coded frames, when the time-consuming motion
estimation/compensation process is not carried out. For motion-
compensated frames (i.e., Inter-frames), a simple model can be
utilized to estimate the coding rate based on the assumption that
the error signal is Laplacian distributed [3].

Our discussion on the feasibility of the exponential R-D
model in real-time video coding is based on the assumption that
the amount of computation needed for building the model is no
more than that for motion estimation/compensation in Inter-
coded frames. Thus, as long as motion-estimation/compensation
can be achieved in real-time, our R-D model for Intra-coded
frames can also be built in real-time. Generally speaking, in
video coding the steps necessary for R-D modeling include
scalar quantization, variable length encoding, dequantization,
and inverse DCT. Here, the estimation of computation
complexity for H.261 (Table 2) is employed to show the
feasibility of our R-D model [4].



As shown in Table 2, the main computation in our R-D
modelling procedure is 3*[(Quantization, Zig-zag scanning) +
(Entropy coding) + (Inverse Quantization) + (Inverse DCT)] =
570 MOPS, whereas the computation involved in motion
estimation/compensation is 608 MOPS. Therefore, it is clear that
the proposed R-D modelling procedure for Intra-frames can be
accomplished within the same time period used for motion
estimation in Inter-frames. This conclusion is also valid for
other standard video coding systems since the main encoding
procedures are very similar to H.261.

5. CONCLUSION

In this paper, we have proposed an exponential functions based
R-D model for accurate rate control in real time video coding.
Our experiments have demonstrated that the model has shown
high estimation accuracy with significantly lower computation
complexity. The proposed model has been used for real-time
rate control in MPEG VBR video encoding and transmission [5]
to achieve optimized bit allocation, guaranteed end-to-end
delay, and smooth video playback.
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Table 1. Comparison of the proposed Model with Cubic Interpolation Model

Exponential Function based Model | Cubic Interpolation Model
Data Relative Error Relative Error
MEAN (%) MAX (%) MEAN (%) MAX (%)

Flower Garden 1.76 3.92 1.62 4.08
Table Tennis 3.11 8.38 3.59 8.57
Susan 341 23.47 4.28 10.27
Wind and Leaves 2.30 5.22 2.57 6.32
Mobile and Calendar 1.55 3.65 1.45 3.82
* Bowing 1.30 2.94 1.60 3.79
* Mother and Daughter 1.07 2.30 1.18 3.32
* Pamphlet 1.49 3.45 1.45 4.03
* Paris 1.18 2.70 0.74 2.36
Summary Mean 1.91% 6.23% 2.05% 5.17%

Var 0.35% 6.71% 0.45% 2.71%

Table 2. Estimation of the computation (MOPS*) in H.261 video codec [4]

Compression MOPS Decompression MOPS
Motion estimation

(25 Searches in a 16*16 region) 608

Entropy coding 17 Entropy decoder 17
2-D DCT 60 Inverse DCT 60
Quantization, Zig-zag Scanning 44 Inverse Quantization 9
Entropy coding 17 Loop filtering 55
Frame reconstruction 99

* ( MOPS: Million operations per second )
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