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ABSTRACT 
 
In real-time video communications, the rate control strategies 
must be utilized to satisfy the end-to-end delay and prevent the 
encoding buffer from over/underflow. In other words, to acquire 
the best possible video quality with a minimal quality variation 
in the playback video, an accurate Rate-Distortion (R-D) model 
of the video source is critical in optimizing the bit allocation for 
video coding. In the paper, an Exponential Functions based R-D 
model is proposed for Intra-coded frames in video coding. 
Numerous experiments have consistently shown that the 
proposed model outperforms other popular R-D models in terms 
of both the estimation accuracy and computation complexity, 
making it suitable for rate control in real-time video coding.  

 
1.   INTRODUCTION 

 
Real-time visual communications is becoming increasingly 
popular with the advances in video compression and network 
technology. To satisfy the end-to-end delay and prevent the 
encoding buffer from over/underflow in real-time visual 
communications systems, rate control strategies are always 
utilized [1, 5]. In other words, to acquire the best possible video 
quality with a minimal quality variation in the playback video, 
an accurate estimation of the rate-distortion characteristics of the 
video source is critical in optimizing the bit allocation for video 
encoding. Especially, in a forward rate control system, if there 
were a large estimation error in one frame, it would have bad 
influence on the bit allocation for following frames, producing 
uneven video quality. In order to predict the output bit-rate and 
the related distortion of the encoder at the given coding 
parameters - quantization scales, for example - it is necessary to 
build an accurate source model to estimate the Rate-Distortion 
(R-D) characteristics of the input data.  The more accurate the 
model, the better the bit allocation.  

For still images or Intra-coded video frames, the R-D 
characteristics are difficult to acquire using closed-form models. 
Some traditional R-D models assume that the input data is 
Gaussian, Laplacian, or generalized Gaussian distributed. 
However, due to the non-stationary characteristics of the image 
signal, the accuracy of these parametric models is often too low 
to be useful for optimized rate control in video coding [1,3]. 
More advanced R-D models, such as the Quadratic model and 
the Cubic Interpolation model, are developed based on a priori 

knowledge of the Rate-Distortion characteristics of image 
signals, with the model parameters being derived from the actual 
image to be encoded [1, 2]. However, it is observed that large 
estimation errors may occur when the Quadratic model is used 
to estimate the bit-rate at small quantization scales (QUANT), 
which makes the model unsuitable for high bit rate video 
coding. Furthermore, while the Cubic model may provide more 
accurate estimation of R-D characteristics for the encoded 
image, its computational complexity in obtaining the R-D data 
at a reasonable number of control points (eight, for instance) is 
often too high to be feasible in real-time video coding. 

In this paper, we propose an Exponential Functions-based 
R-D model for the estimation of the R-D characteristics of the 
images to be encoded. The proposed model is similar to the 
Cubic Interpolation model in that they both employ control 
points followed by estimation of the R-D curve through 
interpolation. The two differ in that our method can achieve 
comparable estimation accuracy using considerably less number 
of control points (i.e., three), which significantly reduces the 
computational complexity of the method and makes it suitable 
for real-time video coding. 

The paper is organized as follows. In section 2, the 
exponential functions-based R-D model for intra-coded video 
frames is explained in detail. In section 3, the performance of 
the proposed model is compared to two other models. The 
computational complexity of the model is analyzed in section 4 
to demonstrate that the proposed method can be used for real-
time video coding. Some conclusions of the paper are provided 
in the final section.  

 
2. EXPONENTIAL FUNCTIONS BASED  

RATE-DISTORTION MODEL 
 

In high bit-rate video coding, the quantization scales (QUANT) 
are changed to control the video encoding rate (R) and the 
corresponding encoding distortion (D) of each frame. An 
accurate estimation of the R-D relationship is of vital 
importance for achieving guaranteed end-to-end delay and 
smooth video playback. In this paper the relationship between R 
and QUANT is estimated using a novel exponential functions 
based model. The relationship between D and QUANT is 
derived via interpolation from the actual distortions of the 
encoded image at the QUANT values chosen for the R-QUANT 
estimation process.   
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Figure 1. Exponential functions based R-Q model 
 

2.1 Rate- QUANT model  
 
Some typical image Rate-QUANT (R-Q) curves are shown in 
Figure 1 (a). It is observed that the R-Q curves have strong non-
linearity at small QUANT values (e.g., Q < 15). To analyse the 
characteristics of the R-Q curves, the Prony curve-fitting method 
is employed, which can fit any curve using a combination of N 
exponential functions. That is, we can build a function F(Q) 
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such that ( ) ( ) ∈≈ iii QQFQR , {1,2,…,31} under some error 
measures. In our experiments, the Minimizing Absolute 
Maximum Error (MinAbsMax) principle is employed for curve 
fitting. The 2*N coefficients of the N exponential functions can 
be derived from a set of linear equations, each corresponding to 
the actual R-Q data at a particular QUANT value (from 1 to 31).  

Through our experiments we find that three exponential 
curves (Fun-1, 2, and 3 in Figure 1) are sufficient to accurately 
fit the original R-Q curve. To acquire the coefficients of these 
three exponential curves, we have to use the actual R-Q data 
obtained at all QUANT values (1 <= Q <= 31). Such brute-force 
approach, however, requires that the video frame must be 
encoded and decoded at every possible value of QUANT, which 

is not feasible in real-time processing. Instead, by observing the 
characteristics of the three exponential curves, we have designed 
a much simpler approach that dramatically reduces the 
computational complexity for building the R-D model with only 
minor performance loss. 

Figure 1 shows that the first exponential function (Fun-1) 
alone fits the R-Q data nicely at large quantization scales (e.g., 
QUANT>10), where the R-Q curve changes slowly. The second 
exponential function (Fun-2) captures the fast-decreasing 
characteristics of the R-Q data at smaller quantization scales 
(e.g., QUANT<10). Finally, the third exponential function (Fun-
3) can be considered as compensation for the estimation errors 
caused by Fun-1 and Fun-2. Intuitively, it is possible to use the 
near-linear section (i.e., larger Q values) of the R-Q data to 
derive Fun-1, and use the non-linear section (i.e., smaller Q 
values) of the R-Q data to obtain Fun-2. Fun-3 can then be 
derived based on the estimation errors generated by Fun-1 and 
Fun-2. Finally, by adding the three functions together, we can 
obtain an accurate estimation of the original R-Q data at all 
possible quantization scales.  

 
2.1.1 Estimation of the linear component of R-D curve 
 
Our target function is  
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Since Fun1’s main contribution is at larger Q values (from 10 to 
31), only two control points of Q1=10 and Q2=25 are used to 
derive the function coefficients. The set of functions used are  
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The adjustable factor α  is used to compensate for the non-
linearity of the R-Q curve near Q1. The two coefficients of Fun-
1 can then be derived using the following formulas: 

Coef2(1)= ln ( Fun1 (Q1) / Fun1 (Q2)) / (Q2-Q1)     (4) 

 Coef1(1)=exp(0.5*(ln(Fun1(Q1)*Fun1(Q2))    
+Coef2(1)*(Q2+Q1)))    (5) 

 
2.1.2 Estimation of the Non-linear component of R-D curve 
 
Similarly, the coefficients Coef1(2) and Coef2(2) of Fun2(Q) is 
determined using only two control points at Q1=10 and Q2=1. 
The two functions used for deriving the coefficients are:    
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where β  serves the same purpose as α . Using Equation (4,5), 
two coefficients Coef1(2) and Coef2(2) are derived for Fun2(Q)  
by replacing Fun1 with Fun2. 
 

2.1.3 Compensation for the estimation error 
 
With the same principle, the third exponential function (Fun3), 
used to compensate for the estimation errors, is determined 
using two control points at Q1 = 1 and Q2 = 25.  
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Finally, we acquired the estimated R-Q curve F(Q) 
F(Q)=Fun1(Q)+Fun2(Q) +Fun3(Q)   (8). 

 
2.2 Distortion- QUANT model  
 

The MSE (Mean Square Error) is widely used as the distortion 
measurement in video coding. The relationship between 
Distortion and QUANT can be simply interpolated from the 
distortion values obtained by encoding the frame at the chosen 
QUANT values (Q = 1, 10, and 25). Through experiments, we 
find that the Cubic interpolation method is more accurate than 
Spline interpolation for all tested video sequences, as evidenced 
in Figure 2.  

 
 

3. PERFORMANCE OF THE MODEL 
 
The proposed method has been extensively experimented to 
compare its performance with other well-known R-D models. 
Test images include frames from video sequences such as 
“Flower Garden” (720x288 size), “Mother & Daughter” 
(320x288 size), and others. To test the performance of our 
Exponential Functions-based R-D Model, in each experiment 
we randomly select one frame from every sequence and encode 
the frame using the Intra-code mode by an MPEG2 encoder. In 
our experiments, the valuesα =95% and β =8% are empirically 
determined for all sequences. The model’s performance may be 
further improved if these two factors are adjusted adaptively 
according to the bit rates at the chosen control points. 

First, the Quadratic Rate Distortion Model is compared 
[2]. Using the same original R-D data at Q={1, 10, 25}, we 
calculate two coefficients a1 and b1 for quadratic polynomial 
with the proposed equations in [2]. The results are shown in 
Figure 3. It is evident that our method produces significantly 
smaller errors for Q<15, while both methods are accurate 
enough for large QUANT values. Apparently, the quadratic 
polynomial model does not do a good job in matching the non-
linearity part (i.e., small quantization scales) of the R-D curve.  

Secondly, the Cubic Interpolation Model is used for 
performance comparison [1]. The Relative Error is defined as  
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Piecewise cubic polynomials are used to interpolate the bit rate 
related to QUANT between the chosen control points. In Cubic 
Interpolation, the control points of {1, 3, 5, 8, 13, 21, 31} are 
used, as proposed in [1]. In our model, Q={1, 10, 25} are used 
as control points. The results are listed in Table 1. The results 
show that our method achieves comparable prediction accuracy 
with the significantly reduced number of control points. Less 
control points means lower computational complexity of the 
method, which is vital for its applicability in real-time video 
coding. The computation complexity of our model, and the 
feasibility of it being used for real-time video coding, will be 
further discussed in the next section.  
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Figure 2. Estimation of the Distortion-QUANT characteristics  
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Figure 3. Comparison of the performance of our model with 

Quadratic Rate-Distortion Model 

 
4. ANALYSIS OF THE MODEL’S 

COMPUTATION COMPLEXITY 
 
The R-D data needed for computing the coefficients of the 
exponential functions for a frame is obtained via actually coding 
the video frame at the chosen control QUANT values.  Due to 
the computational complexity of the method, in real-time rate 
control systems, the proposed R-D based rate control model is 
only employed in estimating the R-D characteristics for the 
Intra-coded frames, when the time-consuming motion 
estimation/compensation process is not carried out. For motion-
compensated frames (i.e., Inter-frames), a simple model can be 
utilized to estimate the coding rate based on the assumption that 
the error signal is Laplacian distributed [3].  
 Our discussion on the feasibility of the exponential R-D 
model in real-time video coding is based on the assumption that 
the amount of computation needed for building the model is no 
more than that for motion estimation/compensation in Inter-
coded frames. Thus, as long as motion-estimation/compensation 
can be achieved in real-time, our R-D model for Intra-coded 
frames can also be built in real-time. Generally speaking, in 
video coding the steps necessary for R-D modeling include 
scalar quantization, variable length encoding, dequantization, 
and inverse DCT. Here, the estimation of computation 
complexity for H.261 (Table 2) is employed to show the 
feasibility of our R-D model [4]. 



 As shown in Table 2, the main computation in our R-D 
modelling procedure is 3*[(Quantization, Zig-zag scanning) + 
(Entropy coding) + (Inverse Quantization) + (Inverse DCT)] = 
570 MOPS, whereas the computation involved in motion 
estimation/compensation is 608 MOPS. Therefore, it is clear that 
the proposed R-D modelling procedure for Intra-frames can be 
accomplished within the same time period used for motion 
estimation in Inter-frames. This conclusion is also valid for 
other standard video coding systems since the main encoding 
procedures are very similar to H.261. 
 

5. CONCLUSION 
 

In this paper, we have proposed an exponential functions based 
R-D model for accurate rate control in real time video coding. 
Our experiments have demonstrated that the model has shown 
high estimation accuracy with significantly lower computation 
complexity. The proposed model has been used for real-time 
rate control in MPEG VBR video encoding and transmission [5] 
to achieve optimized bit allocation, guaranteed end-to-end 
delay, and smooth video playback.  
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Table 1. Comparison of the proposed Model with Cubic Interpolation Model 

Exponential Function based Model Cubic Interpolation Model 

Relative Error Relative Error 

 

           Data 

MEAN (%) MAX (%) MEAN (%) MAX (%) 
Flower Garden 1.76 3.92 1.62 4.08 
Table Tennis 3.11 8.38 3.59 8.57 
Susan 3.41 23.47 4.28 10.27 
Wind and Leaves 2.30 5.22 2.57 6.32 
Mobile and Calendar 1.55 3.65 1.45 3.82 
* Bowing 1.30 2.94 1.60 3.79 
* Mother and Daughter  1.07 2.30 1.18 3.32 
* Pamphlet 1.49 3.45 1.45 4.03 
* Paris 1.18 2.70 0.74 2.36 

 

Mean 1.91% 6.23% 2.05% 5.17% 
Summary Var 0.35% 6.71% 0.45% 2.71% 

 
Table 2. Estimation of the computation (MOPS*) in H.261 video codec [4] 

 

Compression MOPS Decompression MOPS 
Motion estimation  
(25 Searches in a 16*16 region) 608   
Entropy coding 17 Entropy decoder 17 

2-D DCT 60 Inverse DCT 60 

Quantization, Zig-zag Scanning 44 Inverse Quantization 9 

Entropy coding 17 Loop filtering 55 

Frame reconstruction 99   
 *  ( MOPS: Million operations per second ) 
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