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ABSTRACT

A fully adaptive normalized nonlinear gradient descent (FANNGD)
algorithm for neural adaptive filters employed for nonlinear sys-
tem identification is proposed. This full adaptation is achieved
using the instantaneous squared prediction error to adapt the free
parameter of the NNGD algorithm. The convergence analysis of
the proposed algorithm is undertaken using contractivity property
of the nonlinear activation function of a neuron. Simulation re-
sults show that a fully adaptive NNGD algorithm outperforms the
standard NNGD algorithm for nonlinear system identification.

1. INTRODUCTION

A single-neuron nonlinear adaptive filter, trained by gradient de-
scent (GD) can be described by [1]

e(k) = d(k)��(xT (k)w(k)) (1)

w(k + 1) = w(k)� �rwE(e(k)) (2)

where k denotes a discrete time instant, e(k) is the instantaneous
error at the neuron, E(�) is the filter cost function, d(k) is some
teaching (desired) signal, x(k) = [x1(k); :::; xN(k)]T is the input
vector, w(k) = [w1(k); :::; wN(k)]T is the weight vector, �(�)
denotes a nonlinear activation function of a neuron, � denotes the
learning rate and (�)T denotes the vector transpose. The most com-
mon choice for the cost function E(�) is

E(e(k)) =
1

2
e2(k) (3)

The algorithm for on-line adaptation of such an adaptive filter, de-
scribed by the equations (1), (2), and (3), is referred to as the Non-
linear Gradient Descent algorithm (NGD) [1]. Due to its simplic-
ity and inherent nonlinearity, this filter might be considered as a
suitable choice for applications in nonlinear and/or nonstationary
system identification.
The NGD algorithm, however, might suffer from slow conver-
gence and local minima on the error performance surface of the
filter. A fixed learning rate parameter � can be considered as one of
the factors contributing to these problems. Further, a recent result
[2] indicates an inherent relationship between the learning rate pa-
rameter � and steepness of the nonlinear activation function of �,
which has a negative impact on the convergence properties of the
NGD algorithm with fixed �. In order to achieve fast convergence
in the beginning of adaptation of a filter trained by the NGD algo-
rithm, it is advisable to adopt a large learning rate parameter �. On

the other hand, to ensure convergence to an optimal weight vector
w
�, when close to the optimal solution the learning rate parameter

has to be small [3]. Also, a large � may result in instability of the
algorithm. The cost function given in (3) represents an instanta-
neous estimate of the ensemble average he2(k)i, thus introducing
a gradient noise in the operation of the algorithm [4]. This noise
will help the algorithm to escape from spurious local minima, but
will also reduce the convergence rate of the algorithm.
For nonlinear systems, learning algorithms with an adaptive learn-
ing rate are most desirable [5, 1]. One such algorithm for adapta-
tion of a GD based, single-neuron neural adaptive filter is given in
[1]. The Normalized Nonlinear Gradient Descent (NNGD) algo-
rithm exhibits optimal behaviour in the sense that it minimizes the
instantaneous prediction error, by means of an adaptive learning
rate �.
Here we propose a fully adaptive NNGD (FANNGD) with an adap-
tive learning rate, which is based upon adaptation of the free pa-
rameter of the NNGD algorithm using the instantaneous squared
prediction error. The convergence analysis of the proposed algo-
rithm is carried out based upon the contraction mapping proper-
ties of the nonlinear activation function of a neuron. The analysis
is supported by examples for nonlinear system identification and
Monte Carlo analysis.

2. THE NNGD ALGORITHM

Following the method given in [1], when the error term (1), is ex-
panded with a Taylor series, we have

e(k + 1) = e(k) +
NX
i=1

@e(k)

@wi(k)
4wi(k)

+
1

2!

NX
i=1

NX
j=1

@2e(k)

@wi(k)@wj(k)
4wi(k)4wj(k) + � � � (4)

From (1), the first partial derivative can be obtained as

@e(k)

wi(k)
= ��0(net(k))xi(k); i = 1; 2; : : : ; N (5)

where net(k) = x
T (k)w(k). From (2) and (3), the weight update

for i = 1; 2; : : : ; N is given by

�wi(k) = wi(k + 1)� wi(k)

= ��0(net(k))e(k)xi(k) (6)



The second partial derivatives for i; j = 1; 2; : : : ; N can be calcu-
lated as

@2e(k)

@wi(k)@wj(k)
= ��00(net(k))xi(k)xj(k) (7)

Combining equations (4), (5), (6), and (7), yields

e(k + 1) = e(k)� �[�0(net(k))]2e(k)
NX
i=1

x2i (k)

�
1

2!
�2e2(k)[�0(net(k))]2

� �00(net(k))
NX
i=1

NX
j=1

x2i (k)x
2
j(k) + � � � (8)

If, for simplicity, we neglect the second and higher order deriva-
tives of �, then the error term in (8) becomes

e(k + 1) = e(k)
h
1� �[�0(net(k))]2kx(k)k22

i
(9)

where k � k2 denotes the Euclidean norm. In equation (9), e(k+1)
equals zero for an optimal learning rate

�OPT (k) =
1

[�0(net(k))]2kx(k)k22
(10)

The contribution of the second and higher order terms from (8) to
the learning rate given in (10) can be compensated by adding a
variable C to the denominator of (10). Thus an optimal learning
rate for the NNGD algorithm becomes

�OPT (k) =
1

C + [�0(net(k))]2kx(k)k22
(11)

The physical meaning of such an adaptive learning rate is the self-
normalization of the algorithm, since the magnitude of the learning
rate varies in time depending on the tap input power and gradient
in the state space of the filter. The learning rate of the NNGD
algorithm is not fully adaptive since C was chosen to be constant,
and as a result, the estimation error is never zero. Usually, C is
chosen as a small positive value, as in the Normalized Least Mean
Squares (NLMS) algorithm, in order to ensure that the algorithm
does not diverge [6]. To circumvent this drawback, we introduce a
fully adaptive NNGD algorithm.

3. DERIVATION OF THE FANNGD ALGORITHM

Let us briefly analyse the Taylor series expansion given in (8).
From equations (4), (5), (6), and (7), we can compute the reminder
of the Taylor series expansion as

Rn(k) = �
1

2!
�2e2(k)[�0(net(k))]2

� �00(xT (k)(w(k) + �4w(k))kx(k)k42 (12)

where 0 < � � 1. This reminder can be expressed as

Rn(k) = ��e(k)C�(k) (13)

where

C�(k) =
1

2!
�e(k)[�0(net(k))]2

� �00(xT (k)(w(k) + �4w(k))kx(k)k42 (14)

An explicit computation ofC�(k) from (14) would require to solve
a quadratic equation, due to the relationship between the learning
rate parameter � and constant C, given in (11). This is not easy,
due to the fact that the discriminant of the quadratic equation can
be negative. In addition, we can only estimate the value of the
second derivative, which appears in the right hand side of (14).
Let us rewrite (8) as

e(k + 1) =
�
1� �[�0(net(k))]2kx(k)k22

�
1

2!
�2e(k)[�0(net(k))]2kx(k)k22

��00(xT (k)(w(k) + �4w(k))kx(k)k42
�
e(k) (15)

From (11) and (15) we have

e(k + 1) = 
(k)e(k) (16)

where 
(k) = 
[C(k)]. Thus, the instantaneous squared error to
be minimized is given by

e2(k + 1) = 
2e2(k) (17)

This new function 
2 is continuous on the set

�R = R n
h
� [�0(net(k))]2kx(k)k22

i
(18)

where R denotes the set of real numbers. According to the In-
termediate Value Theorem (IVT), function 
2 attains its minimal
value for some C�(k) 2 �R, which does not have to be zero. From
(15) and (16), it can be easily shown that C�(k) has a finite value,
and that it is bounded from below by

�[�0(net(k))]2kx(k)k22
2

� C�(k) (19)

Explicit computation ofC�(k), that minimizes 
2 at every discrete
time instant k is computationally very expensive. Furthermore, it
might result in large oscillations of the learning rate, and conse-
quently in instability of the algorithm. Also, it does not ensure a
safe start of the algorithm.
Therefore, in order to obtain a fully adaptive learning rate for the
NNGD algorithm, we look for a sequence C(k); k = 0; 1; 2; : : :,
which minimizes (15). In addition, we would like to be able to
obtain a sequence C(k) from a simple recursive equation

C(k) = C(k � 1) +4C(k) (20)

which is not computationally expensive. Therefore, we propose
computation ofC(k) according to the following recursive equation

C(k) = C(k � 1) + �e2(k) (21)

where � is a small positive constant. To ensure a safe start of the
algorithm, the initial condition C(0) should be chosen as a small
positive value. The proposed algorithm hence increases computa-
tional burden by two additional multiplications and one addition.
Also, as desired, the sequence C(k) computed according to (21)
is monotonically increasing, thus providing a larger learning rate
in the beginning of the operation of the algorithm (search phase),
and reducing the value of the learning rate in the converge phase.



4. CONVERGENCE OF THE PROPOSED ALGORITHM

It is desirable that je(k)j ! 0 as k !1, which for equation (16)
gives

je(k + 1)j = j
jje(k)j (22)

From (15), (16), and (22) we have

je(k + 1)j = j1� �[�0(net(k))]2kx(k)k22 � �C�(k)jje(k)j

� je(k)jj1 � �[�0(net(k))]2kx(k)k22 � �C�(k)j

(23)

From (23), e(k) will converge uniformly if

j1 � �[�0(net(k))]2kx(k)k22 � �C�(k)j < 1 (24)

which is a contractive behaviour. The last relationship can be
rewritten as

�1 < 1 � �
�
[�0(net(k))]2kx(k)k22 + C�(k)

�
< 1 (25)

Having in mind bounds on C�(k), the right hand side of inequality
(25) can be easily verified. The left hand side of inequality (25)
reduces to

[�0(net(k))]2kx(k)k22 + 2C(k) > C�(k) (26)

Given that C(k) has a monotonically increasing trend and C�(k)
is finite, there is a discrete time instant K, so that for k > K the
inequality (26) holds. Due to a contractive behaviour of (22) and
(23), it is obvious that in this case e(k) exponentially decreases
toward zero as k !1, which impliesC(k) ! C(1) as k !1,
where C(1) denotes some finite positive value.

5. MORE ON CONVERGENCE

Consider the error equation e(k) = d(k)��(net(k)), but assume

d(k) = q(k) + �(xT (k)~w(k)) (27)

where ~w(k) are optimal filter weights and q(k) denotes a zero
mean uncorrelated measurement disturbance sequence, with vari-
ance �2q . It then follows that

e(k) = q(k) + �(xT (k)~w(k))� �(net(k)) (28)

Also, we shall assume a ”random walk” model for the optimal
filter weights, i.e.

~w(k + 1) = ~w(k) + "(k) (29)

where "(k) is zero mean white vector process with covariance ma-
trix �2"I, where the I denotes the unitary matrix. Consider again
the weight update equation

w(k + 1) = w(k) + �(k)e(k)�0(net(k))x(k) (30)

From (28) and (30), we have

w(k + 1) = w(k) + �(k)q(k)�0(net(k))x(k)

+�(k)[�(xT (k)~w(k))� �(net(k))]�0(net(k))x(k) (31)

Now, introduce the misalignment vector as

v(k) = ~w(k)�w(k) (32)

Following the approach from [7], if we subtract (31) from (29)
yields

v(k + 1) = v(k) + "(k)� �(k)q(k)�0(net(k))x(k)

��(k)[�(xT (k)~w(k))� �(net(k))]�0(net(k))x(k) (33)

For � a contraction mapping the term in the square brackets from
(33) is bounded from above by �jxT (k)v(k)j, 0 < � � 1. There-
fore,

v(k + 1) � v(k) + "(k)� �(k)q(k)�0(net(k))x(k)

� �(k)xT (k)v(k)��0(net(k))x(k) (34)

For a contractive activation function of a neuron, term �0(net(k))
is also bounded as 0 < �0(net(k)) � 1, and can be replaced by
�0(�) < Æ � 1. Note that for a sigmoidal nonlinearity �0(�) > 0.
Now (34) becomes

v(k + 1) � v(k) + "(k)� �(k)q(k)Æx(k)

� �(k)xT (k)v(k)�Æx(k) (35)

It is convenient to introduce the independence assumption between
�, x, and v which gives

E
�
v(k + 1)

�
= E

�
v(k)

�
E
�
I� �(k)Æx(k)xT (k)�

�
(36)

where E(�) is the expectation operator. For convergence, 0 <
E
�
kI� �(k)Æx(k)xT (k)�k

�
< 1, which for the upper limit of �

and Æ, and using an assumption that x(k) is an uncorrelated input
sequence gives

0 < �(k) < E

�
1

xT (k)x(k)

�
(37)

The learning rate of the proposed algorithm satisfies relationship
(37). This means that the NLMS algorithm is the upper bound for
the analyzed algorithm, which ensures stability of the proposed
algorithm.
Finally, from (28) and using the assumption that � is a contraction
mapping, gives

e2(k) = q2(k) + �xT (k)v(k)vT (k)x(k) + 2�q(k)xT (k)v(k)
(38)

Thus, for the upper limit of � and taking expectation of both sides
of (38), conditioned on the measurements taken up to the discrete
time instant k, we have

�2e � �2q + x
T (k)E

�
v(k)vT (k)

�
x(k) (39)

where �2e denotes the variance of the prediction error. From (38)
and (39), it is obvious that the sequence C(k), computed accord-
ing to equation (21), provides a time average of the estimate of
the prediction error variance, which depends on the measurement
noise variance and the covariance matrix of the misalignment vec-
tor.

6. EXPERIMENTAL RESULTS

In order to verify the analysis we performed several experiments
on a nonlinear system described by

y(k) =
1

1 + e��xT (k)(w0+4w0(k))
+ q(k) (40)



where the weights w0 = [ �0:31962; 0:49231; �0:19933;
0:86133; �0:21727; �0:02523; �0:86119; �0:86022;
� 0:34348; 1:05471 ]T , 4w0(k) represents a zero mean uncor-
related vector process and � = 4. In all the experiments the filter
order was N = 10 whereas the logistic function was employed
within the neuron. The quantitative performance measure was the
standard gain, a logarithmic ratio between the variances of the ex-
pected system output and the error Rp = 10 log(�̂2y=�̂

2
e). Con-

stant C in the NNGD algorithm was set to be C = 0:0001, and
parameter � in the proposed algorithm was � = 0:1.
In the first experiment we compared the performances of the pro-
posed algorithm and the standard NNGD algorithm for nonlinear
system identification. Parameter q(k) (39) was set to be q(k) =
0; 8k, and 4w0(k) was set to be 4w0(k) = 0. The input signal
was a white noise sequence, appropriately scaled to fit the range
of the logistic nonlinearity. In that case the standard gain for the
fully adaptive NNGD algorithm was Rp = 34:96dB, while for
the standard NNGD algorithm Rp = 34:64dB, which is more
than 0:3dB better. In the second experiment we performed the
Monte Carlo analysis of the proposed algorithm and the standard
NNGD algorithm for identification of the nonlinear system (39),
with 4w0(k) 6= 0 and q(k) = 0; 8k. The number of iterations
was 300. The results of the experiment are shown in Figure 1(a).
In this case an average standard gain for the fully adaptive NNGD
algorithm was Rp = 31:77dB, while for the standard NNGD al-
gorithm Rp = 19:71dB.

In the third experiment we performed Monte Carlo analysis
of the proposed algorithm and the standard NNGD algorithm for
identification of nonlinear system (39), with 4w0(k) set to be the
same as in the second experiment and q(k) was set to be a zero
mean white process with variance �2q = 0:01. The number of iter-
ations was 300. The results of the experiment are shown in Figure
1(b). In this case, an average gain for the fully adaptive NNGD
algorithm was Rp = 24:80dB, while for the standard NNGD al-
gorithm Rp = 14:63dB.

It is obvious that the proposed algorithm outperforms the stan-
dard NNGD algorithm for nonlinear system identification of sys-
tem (40).

7. SUMMARY

A fully adaptive NNGD (FANNGD) algorithm for nonlinear sys-
tem identification has been proposed. The proposed algorithm
provides a full adaptation of the learning rate using an instanta-
neous squared prediction error, with a small increase in the com-
putational burden, as compared with the NNGD algorithm. The
convergence analysis of the proposed algorithm has been under-
taken based on contractivity of the nonlinear activation function of
a neuron. Experiments on nonlinear system identification support
the analysis and confirm that the proposed algorithm outperforms
the standard NNGD algorithm for system identification.
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