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Abstract also proposed a similar approach which uses a parametric
) ) . shape model to consider shape deformation.

This paper presents a new method for image segmentation | ihis paper, we present a shape deformation method

by deforming the object shape in a template. The defor-oying advantage of the special characteristics of medical

mation process is controlled using a thin-plate spline kernel images. Specifically, we treat 3D medical images as a se-

based regularization method. The proposed method is esi:wence of 2D slices. We first manually segment one or a few

pecially useful for 2D-based segmentation of 3D medical gjices to construct the initial templates. The object shapes

images by treating segmented slices as templates for theif, yeqe templates are then deformed to segment their neigh-
neighboring unsegmented slices. We have applied the proy,qying sjices one at a time until all the slices are successfully

posed method to extract the scalp contours in brain CryoseCyggmented. In the process, the template is successively up-
tion images with very encouraging results. dated before it is used to process the adjacent slice.
The rest of the paper is organized as follows. In section
1. INTRODUCTION 2, we describe the shape-based deformation method based
on the thin-plate regularizations. Section 3 presents some

An effective way for image segmentation is to incorporate of its applications to medical image segmentation, followed
the known shape information of the desired objects into the PY the conclusion in section 4.
segmentation process. Generally, the shape of an object is

described by the boundary contour (or several closed con- 2. THE PROPOSED METHOD
tours) of the object, which can be represented by a sequence
of sampled landmark points. For simplicity, consider the case in which the template im-

A number of shape-based segmentation methods haveage contains only a single closed contour. Extension to
been proposed. For example, the active contour (or snakesjnultiple contours is straightforward. Here the contour is
[1] model constrains the desired shape to be sufficiently represented as a series of ordered landmark pdints-
continuous, smooth and differentiable during the deforma- {v,, vs, ..., v, }, wherev; = (x;,y;) are the coordinates of
tion process. Although the original active contour cannot thei-th landmark. The proposed method first identifies a set
process multiple contours, the problem can be solved usingof corresponding landmark poin¥é’ = {v/,v},....,v.}
the recent geodesic contour method [2]. wherev, = (z},y;) are obtained from the target image us-

More advanced shape models include the point distri- ing conventional edge detection algorithms. With the de-
bution model (PDM) by Cootes et al.[3], which can learn tected (noised) landmarRé’, the next step is to deform the
shape variations from a set of segmented training imagesshapeV to match{v},vj, ..., v, } while also keeping the
containing a set of landmarks to define the shape. PDM cal-general shape characteristics\of This can be described as
culates the covariance matrix of these landmarks and thera regularization problem as findinlg = (f,g) : R> — R?
the shape variations are represented along the directions othat minimizes
the most significant eigenvectors of the covariance matrix. N
Howiever, itis atedpqspb_to bwlt_d the _trammg set manuqlly 1 Z v — T(vi)|[? + A¢[T] 1)
and in some cases it is difficult to identify the corresponding n =
landmark set for all the shapes. Similarly to PDM, Staib et
al. [4] decompose the shape into items with different fre- where\ > 0 is a regularization factor and[T| > 0 is
guencies. Then the shape knowledge is learned througtthe desired regularization. There are three main steps in our
studying the distribution of each Fourier coefficient. The approach: detectiny’, selecting of¢[T] and calculating
result is used to constrain the shape deformation. Jain [5]\, which are discussed below.



2.1. Extraction of V’

With V as an initial estimate, we assume thafalls inside
acircleR(v;) centered at; with radiusr; in the target im-
age. WithinR(v;), all the candidate “edge” points are iden-

tified based on the pixel intensity gradient, and the one with
the largest intensity gradient amplitude is chosen as land-

markv;. Selection ofr; is related to the similarity between

the template and the target. For segmenting 3D medical im-
ages slice by slice, this is usually determined by the distance
between two neighboring slices. The larger the distance, the )
larger ther;. In practice,r; should be adaptively modified WhereL(:) = (£3)2 + 2(52

based on the number of the candidate edge poin&in).
If there are too many candidate edge pointsifv;), then

the medical image segmentation, the desired transfbrm
should be a homologous mapping geometrically and well
reflect the biologic shape deformation. For our problem,
we propose to use the thin-plate kerdé{v,v') = ||v —
v'||?log ||[v — Vv'|| [6], whereg[T], also named thbending
energy is given by
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According to the splines theory [7], the solution of the
thin-plate regularization can be acquired by

r; heeds to be reduced, and vice versa. In practice, because

an overestimated; may introduce some edge points from
other structures, an upper limit feof is often set. Some-
times, for computational efficiency, we only search for the
corresponding landmank; along the normal direction of;
instead of from all pixels iR(v;) as shown in Fig.1.

Fig. 1. Search for landmarks along the normal direction of
the initial shape.

It is possible that no landmark points are identified in
some area®(v;) because of noise or occlusion. However,

f(v) =a1 + asx + asy + ZciK(v,vi)
=1
g(v) =by +box + bsy + Y _ diK(v,v;).

=1

®3)

Herev = (z,y) and K(-,-) is the thin-plate kernel and
the parametera = (a1, as,a3)", b = (by,be,b3)7, c =

(c1,¢,...,cn)T @ndd = (dy, ds, ..., d,,)"T are calculated by
K+n\ P c d) [(x ¥y @)
PT 0 a b o 0 O

wherek;; = K(v;,v;);4,j = 1,2, ...,nare the elements of
matrix K andP = (1,x,y). Herex = (x1, 22, ..., 2,)7
y = (1,92, yn)t, X (xh, 2y, ..., 2l)T andy’
(Y1: Y5 Y) "

With the thin-plate regularization method, we get a new
regularized shap& (V). It is obvious that when = 0, it
degenerates to the popular thin-plate interpolation method
[6], in which the deformed shape is the same as the detected
V’. In the other extreme, ik = oo, the thin-plate regu-

this is not a problem in the proposed method because withl@rization attempts to find the best affine transform¥n

the proposed method discussed in the next section, we caf’hich has least square error witf since now the solution
use only the remaining landmarks detected in the target jm-Must be in the spacgf|L(f) = 0}. That means that, with
age to determine the shape deformation function. With this the thin-plate regularization, the shape is considered to be
function, the undetected landmarks can be calculated di-invariant under the affine transform.

rectly. This is desirable because we can purposely remove

some detected landmarks that are suspected to be incorrect

so that the influence of noise and edge detection errors car?-3- Selection ofA

be kept small.

2.2. Regularization

From the regularization theory[T] can be defined as a

The regularization parameteérplays an important role in
the thin-plate deformation. The optimalis chosen for
our problem by minimizing the ordinary cross-validation
(OCV) function

norm in a reproducing kernel Hilbert space (or subspace)
which can be uniquely represented by a positive definite (or

VoM =
conditionally positive definite) kernel functidki (v, v'). For o)
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wheref[* andg[*! are the minimizers of the following two
functions, respectively,
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They are solved from (4) for a set af In fact, this is ac-
quired using the principle of “leaving-out-one” cross-values
for cross validation.

Wahba [7] have conducted a thorough study on how
to estimate\ for the scalar function approximation splines _. ,
and also generate the OCV to generalized cross vaIidationF'g' 3. The result of the shape deformation. The target

(GCV). The main principle can also be adapted to select Op_|mage in the top row is 5 slices away from the template; the
timal A for our 2D shape deformation problem here image in the bottom row is 10 slices away from the template.
' The left column is the initial template shape superimposed

in the target image; the middle column is the detection of
the landmarks; the right column is the deformed shape.

3. EXPERIMENTS

The proposed regularization method has been used to ex-

tract the scalp contour from a series of brain cryosection . .
images from the Visual Human Project. Fig.2 shows the  Finally, we use the proposed deformation method to seg-

initial template slice with manual extracted scalp contour Ment the scalp contour from3D cryosection brain image.

consisting of 100 landmark points distributed uniformly. ~ Fi9-4 is the segmentation of the slices above the template
slice while Fig.5 is the results for slices below the template

in the 3D brain cryosection image. Both the first image in
Fig.4 and last image in Fig.5 are 31 slices away from the
initial template image. The result is considered very good
given the difficulty in extracting the scalp contour.

Another desirable property of the proposed method is its
flexibility in selecting the landmarks. In the PDM model,
all the shapes should have the same number of landmarks
and there exists an one-to-one landmark correspondence be-
tween every two shapes. In the proposed method, this is re-
quired only between the neighbors (the template and the tar-
getimages). After the shape deformation, we can re-sample
the shape contour in a slice before it is used as the template
to segment its neighbors. This is very useful in practical ap-
tpIication since after the shape deformation, the landmarks
may be overly redundant in some segments and too sparse
in other segments along the contour.

Fig. 2. Left: initial template image; Right: the manually
extracted scalp contour.

According to section 2.1, we extrast’ along the nor-
mal direction of the template shape. For scalp contours in
cryosection image, it is easy to see that the intensity of pix-
els just outside the scalp contour is smaller than of those jus
inside the contour. So the extraction of the landmarks
done by searching the a rising-edge (from outside to inside)
nearv; and along the normal direction centered-at

To demonstrate the performance of the proposed shape
deformation method, a set of result is shown in Fig.3, where
the template and target images are separated by five or ten
slices. As can be seen, the proposed shape deformation
method can get the scalp contour quite accurately even withThis paper presents an image segmentation method using
inaccurate edge points detected from the target image. Foshape regularization. This method is especially suitable for
practical applications, where a target is the neighbor of the segmenting 3D medical images slice by slice, where there
template, the geometric difference between the template andare only small shape variation across the neighboring slices.
the target images is much smaller, and we can expect muchrhe segmented shape in one slice can be used as a template
better result. for its unsegmented neighbors.

4. CONCLUSION



Fig. 4 Segmentation of the slices above the template. Fig. 5. Segmentation of the slices below the template.The
The top-left one is 31 slices away from the template; The top-left one is 1 slice away from the template; The bottom-
bottom-right one is 1 slice away from the template. right one is 31 slices away from the template.
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