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ABSTRACT

In this paper a design method for low latency multicarrier
transmission is presented. It can be considered as a gener-
alization of the Trailing-Zeros Transmitter approach in [1].
The generalization mainly consists of using FIR redundant
filter banks for the transmitter and receiver instead of pure
block transforms and allowing to choose the guard inter-
val independently of the channel impulse response length.
Thanks to the latter, we can design a multicarrier transmis-
sion system with a low latency time, which is a critical pa-
rameter for online applications, even for the case that the
channel has a long impulse response, as e.g. a twisted-pair
copper wire line of several miles length. The design of the
transmitter and receiver is based on a Smith decomposition
of the channel. Advantages as well as limitations of the new
algorithm are discussed.

1. INTRODUCTION

Multicarrier modulation finds its application in recently stan-
dardized high rate data transmission systems as e.g. Dig-
ital Audio Broadcasting (DAB), Digital Video Broadcast-
ing (DVB-T), Wireless LAN (IEEE 802.11, HIPERLAN 2),
Asymmetric Digital Subscriber Lines (ADSL), Very High
Data Rate Digital Subscriber Lines (VDSL). Instead of trans-
mitting one symbol after the other as in single-carrier data
transmission, a block of M symbols is transmitted in paral-
lel and each symbol is assigned 1=M of the available band-
width. The most common algorithms are Orthogonal Fre-
quency Division Multiplexing (ODFM) for wireless trans-
mission and Digital Multi-Tone (DMT) Modulation for trans-
mission over twisted pair copper wires. Both algorithms are
based on Fast Fourier Transform (FFT). In order to obtain
a simple equalizer at the receiver a so called guard inter-
val of L samples is introduced at the end of each block
of M symbols where L has to be at least as long as the
channel impulse response. However, the introduction of the
guard interval reduces the bandwidth efficiency by a factor
of M=(M + L). This is particularly severe, if the chan-

nel impulse response and thus the guard interval L is long
compared to the block length M . Consequently, in high bit-
rate applications over short distances as ADSL or VDSL
the block length M is chosen in the range from 256 to 2048
to maintain a reasonable bandwidth efficiency. This, on the
other hand results in a large latency time of the transmission
system due to the large block length.

For time invariant transmission channels the transmit-
ter and receiver can be jointly optimized to obtain a higher
data rate for a given channel. The guard interval here is
replaced by the more general idea of the introduction of re-
dundancy. This is very similar to the idea of channel coding
where redundancy is introduced in order to reduce the bit
error rate during transmission at the receiver. The following
approaches have already been treated in literature:

For IIR transmitter and receiver filters Yang et al. pro-
pose an iterative minimum mean squared error (MMSE)
transmitter / receiver optimization in [2] and a closed form
MMSE solution is provided by Li et al. in [3]. For FIR joint
transmitter / receiver optimization a zero-forcing solution as
well as well as an MMSE solution are provided in [1]. In
[4] a method using a now widely used cyclic extension is
presented. However, in these approaches the number of re-
dundant samples that is introduced has to be greater than the
length of the channel impulse response. Thus, this approach
cannot be applied when both high bandwidth efficiency as
well as low latency time have to be satisfied for a transmis-
sion channel with long impulse response.

We here take the idea from [1] for joint FIR transmitter /
receiver optimization and generalize it such that the amount
of redundancy to be introduced is independent of the chan-
nel impulse response length.

The outline of the paper is as follows: In section 2 we
describe the transmission system as a multiple-input mult-
iple-output (MIMO) system. We then review the Trailing-
Zeros Transmitter from [1] in section 3 and propose a gener-
alization that allows low latency transmission also for long
channel impulse responses in section 4. Finally, section 5
draws conclusions and shows limitations of the proposed
algorithm.



2. DESCRIPTION OF THE TRANSMISSION
SYSTEM

The general transmission scheme is shown in Figure 1.
P

/S

u0

u1

uM -1

u( )m v( )m

c n( )

r n( )

channel

û1

S
/P

F
(

)z

y( )m u( )m^
receiver

ûM -1

û0

F
(

)z

G
(

)z

transmitter

Figure 1: General MIMO transmission scheme with FIR
transmitterG(z) and FIR receiver F(z)

The transmitter is given by G(z) and transforms the
vectoru(m) ofM input signals into a vectorv(m) ofM+L
output values. These are then parallel to serial transformed
and transmitted over the channel which consists of the chan-
nel impulse response c(n) as well as additive white gaussian
noise r(n). At the receiver the incoming data are serial to
parallel transformed. The FIR receiver matrix F(z) then
equalizes the incoming P = M+L values in y(m) into the
vector û(m). In the case of perfect equalization, û(m) is a
delayed copy of the input vector u(m):

û(m) = u(m� d) (1)

where d describes the system delay in number of blocks.
Note that basically, the system delay can be any integer de-
lay, but for simplicity we focus on delays of integer numbers
of blocks. For a low-latency system, d shoul be chosen as a
small integer value.

The input / output relationship of the transmission scheme
in the z domain can be derived as [1]:

û(z) = F(z)z�1C(z)G(z)u(z) +F(z)r(z) (2)

where r(z) is a vector containing the P polyphase compo-
nents of the additive channel noise and C(z) describes the
channel matrix

C(z) =

2
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C0(z) z�1CP�1(z) � � � z�1C1(z)
C1(z) C0(z) z�1C2(z)

...
. . .

...
CP�1(z) CP�2(z) � � � C0(z)
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whose entry Ci(z), i = 0; : : : ; P � 1, is the i-th type-I
polyphase component [5] of the channel impulse response
C(z):

C(z) =
P�1X
i=0

z�iCi(z
P ) (3)

3. TRAILING-ZEROS TRANSMITTER

In [1] a Trailing-Zeros Transmitter for joint transmitter / re-
ceiver optimization was proposed. The authors make the as-
sumption that both, transmitter and receiver, are pure block
transforms described by matrices G0 and F0, respectively,
and that the order of channel impulse response does not ex-
ceed length of guard interval. Thus, due to the latter, this al-
gorithm cannot be applied for low latency transmission with
high bandwidth efficiency if the channel has a long impulse
response. As redundant samples L zeros are introduced at
the end of each block of M data symbols. The resulting
transmission scheme is a special case o the general MIMO
setting and is depicted in Figure 2. The input / output rela-
tionship writes:

û(z) = F0 �C(z)z�1
�
G0

0L�M

�
u(z) +F0 � r(z) (4)
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Figure 2: Trailing-Zeros Transmitter from [1]

In case that the above mentioned assumptions are met,
the the entries of the channel matrix reduce to polynomials
of a maximal degree of one:

C(z) = C0 + z�1C1 (5)

and the input / output relationship in the time domain writes:

û(m) = F0 �C0 �

�
G0

0L�M

�
� u(m� 1) + F0 � r(m) (6)

Observe that C1 vanishes because its non-zero entries are
met by 0L�M . From the above equation it can be seen that
no intersymbol interference occurs. A zero-forcing solution
for G0 and F0 that minimizes the noise variance as well as
an MMSE solution are provided in [1].

4. GENERALIZATION OF TRAILING-ZEROS
TRANSMITTER

In the following we propose a generalization of the Trailing-
Zeros Transmitter that allows for low latency time indepen-
dently of the channel impulse response length. We make
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Figure 3: Smith decomposition of channel matrix; special structure of transmitter and receiver

the assumptions that both, transmitter and receiver, are FIR
redundant filter banks described byG(z) and F(z), respec-
tively, in Figure 1 and that the number of redundant samples
L can be chosen independently of the filter length.

The input / output relationship in the z domain is thus
given by (2). In order to find optimal transmitter and re-
ceiver, we apply the Smith decomposition [5] to the channel
matrixC(z):

C(z) = V(z) � �(z) �W(z)

with V(z) and W(z) being P � P unimodular matrices
and �(z) being a diagonal matrix, see Figure 3. Recall that
a unimodular matrix is a matrix with FIR entries that has an
FIR inverse. This can be seen as similar to channel equal-
ization. Unlike the general Smith decomposition, we would
like to include a delay z�n0 , where n0 is a small integer, in
the diagonal matrix �(z). We now choose the transmitter
and receiver such that they diagonalize the channel matrix:

G(z) =W�1(z)

�
G0

0L�M

�
; F(z) = [F0 0M�L]V

�1(z)

(7)
This choice can be interpreted as performing a channel op-
timized precoding at the transmitter (using W�1(z)) and
equalization at the receiver (usingV�1(z)). G0 and F0 are
M �M block transforms that will be optimized jointly. For
this transmitter and receiver the input / ouput relationship
writes [5]:

Û(z) = [F0 0M�L] z
�1�(z)

�
G0

0L�M

�
U(z)

+ [F0 0M�L] ~R(z) (8)

with ~R(z) = V�1(z)R(z). Observe that V(z) is not nec-
essarily paraunitary. That means that a channel noise am-
plification can appear. To avoid or limit this effect, we
included the delay n0 in the diagonal matrix �(z), such
that we choose the n0 with the least noise amplification.

In the Smith decomposition context this can be interpreted
as choosing the biggest coefficient as pivot element for the
decomposition. Its corresponding exponent of z then deter-
mines the delay.

If the P polyphase components Ci(z) in the channel
matrixC(z) do not contain common zeros, �(z) writes:

�(z) = z�n0diag(1; : : : ; 1; det(C(z))) (9)

and if L � 1, the input / output relationship in (8) becomes:

Û(z) = z�1F0G0U(z) +F0 ~R0(z) (10)

and writes in the time domain

û(m) = F0G0 u(m� 1) + F0~r0(m) (11)

~R0(z) and ~r0(m) are column vectors of length M in the
z and time domain, respectively, and contain the first M
polyphase components (rows) of the noise vectors ~R(z) and
~r(m), respectively. Figure 4 shows the equivalent transmis-
sion scheme. Similar to (6), no intersymbol interference
occurs in (11). Thus, the same algorithms as in [1] can be
applied to jointly optimize the block matricesG0 andF0 of
the FIR transmitter and receiver filter banks, respectively.

Maximizing the output SNR under a zero-forcing (ZF)
constraint (perfect equalization in absence of additive noise),
the optimization criterion writes:

max
G0;F0

SNR subject to F0G0 = IM (12)

In [1] the following expression for the SNR has been
derived:

SNR =
trace(F0G0RuuG

H
0
FH
0
)

trace(F0R~r0~r0 F
H
0
))

(13)

whereRuu andR~r0~r0 denote autocorrelation matrices

Ruu = Efu(m)uH (m)g; R~r0~r0 = Ef~r0(m)~rH0 (m)g
(14)



S/P

F
0

r n( )

y( )m

û( )m

{L zeros

v( )m

u( )m

u0

u1

uM -1

vP -1

v0

v1

G
0

û0

û1

ûM -1

~

z
-1

z
-1

z
-1

z
-1

det( ( ))C z
L samples

z
-1

Figure 4: Equivalent transmission scheme obtained from
simplifying Figure 3

respectively, and uH(m) denotes the transpose hermitian of
u(m). Under the ZF constraint G0 � F0 = IM where IM
denotes the M �M identity matrix, (13) writes:

SNR
ZF
=

trace(Ruu)

trace(F0R~r0~r0 F
H
0
)

(15)

A solution for white input sequence u(n) with power � 2

u,
which is a common case in communications for modulated
input signals, is [1]:

G0 =
1

�u
V~r0�

�1=2
~r0

; F0 = �u �
1=2
~r0
VH

~r0 (16)

withR�1
~r0~r0

= V~r0 �~r0 V
H
~r0

5. CONCLUSIONS AND LIMITATIONS

In this paper we have provided a generalization of the Zero-
Trailing Transmitter proposed in [1]. The generalization
mainly consists of using redundant filter banks instead of
block transforms at the transmitter and receiver. This al-
lows us to choose the amount of redundancy inserted inde-
pendently of the filter length. Thus, even for channels with a
long channel impulse response the overall latency time can
be small. Although the transmitter and receiver consist of
redunandant FIR filter banks we only optimize coefficients
of the M � M block transforms G0 and F0 in Figure 3.
The remaining part of the transmitter is used to diagonal-
ize the channel using Smith form for the channel matrix.
On one hand, this procedure has the nice feature that for
channels where the P polyphase components do not have
common zeros, the Smith form not only diagonalizes the
channel but also equalizes P � 1 elements of the decoupled
impulse responses in �(z). On the other hand, if the chan-
nel impulse response has small coefficients at the beginning,
synchronizing on these coefficients results in a significant
SNR loss and a high range of values for the unimodular ma-
trices W(z) and V(z). For that reason we introduced the

delay z�n0 in the diagonal matrix �(z). Furthermore, these
matrices are not unique and different realizations can differ
significantly in length and numerical stability.

Future research has to focus on optimizingW(z),V(z),
and G0, F0 together. Also, a better SNR can be expected
if not only optimizing block matrices but FIR filters in the
transmitter and receiver.
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