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ABSTRACT

In this paper, we propose a new adaptive algorithm for
subspace estimation and tracking that is based on Rayleigh’s
quotient. This algorithm allows the estimation of the signal
subspace of a vector sequence. It has a number of interesting
properties such as a low computational complexity, a fast
convergence, orthogonality of the subspace vectors which is
ensured at each iteration and a good numerical stability. As
will be shown, the proposed algorithm outperforms Oja’s
algorithm.

1. INTRODUCTION

Fast estimation and tracking of the signal subspace of a
sequence of random vectors is the key-stone to many appli-
cations that span a variety of areas of information process-
ing such as data compression, parameter estimation, pattern
recognition, neural networks and, in particular, wireless
communications, among others [1]-[2].

Subspace estimation can be performed using the batch
eigenvalue decomposition (EVD) of the (estimated) corre-
lation matrix or the singular value decomposition (SVD) of
the data matrix [3]. However, these two approaches are not
suitable for adaptive applications where the required repeti-
tive estimation of the subspace can be a real computational
burden.

In the literature, many fast algorithms have been pro-
posed [4]. These can be classified, depending on their
computational complexities, as [7]
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noise) subspace weight matrix to be estimated and
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Among the least complex algorithms (i.e.
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), we

can mention OJA algorithm which was first developed in
neural networks area [8]. One of the main advantages of
OJA is its ability to estimate both signal (or principal) and
noise (or minor) subspaces by simply reversing the sign

of the learning parameter, say � . However, unless � is
arbitrarily small, OJA algorithm diverges. Moreover, the
orthogonality of the weight matrix, i.e. the orthogonality
between the

�
subspace column vectors, is not (perfectly)

ensured as shown in the simulations. The latter, however, is
a very desirable property in many applications [10].

In this paper, we first present a fast review of OJA
algorithm. Then, we introduce Rayleigh’s quotient based
adaptive subspace estimation algorithm as developed by
Yang and Kaveh in [1]. The latter uses Gram-Schmidt
orthogonalization at each iteration. Accordingly, it has a
very high computational complexity. Next, we derive a
fast algorithm based on Rayleigh’s quotient followed with
its normalized version. Finally, we present the simulation
results of the proposed algorithm along with some comments
and concluding remarks.

2. REVIEW OF OJA ALGORITHM

Consider the problem of extracting the signal (or noise) sub-
space spanned by the sequence ��� ����	�� of dimension

�����
which is assumed to be the span of the

�
signal (or noise)

eigenvectors of the covariance matrix ���! #" � ���$	 �&% ����	(' .
To solve this problem, several subspace extraction algo-
rithms have so far been proposed [5]-[9]. The minor
subspace extraction algorithm by Oja et al. [8] can be
formulated as) �+*-,/.�	 � ) ��*0	21 �435� ��*(	06 % �+*0	21 ) �+*0	(67�+*0	(6 % ��*0	98� ) ��*0	21 �;: ��*(	06 % �+*0	 (1)

where
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is the minor subspace estimate,6C��*(	�D� ) % �+*0	 � �+*0	 , : ��*0	ED� � � ��*(	;1 ) �+*0	06C�+*0	F	
, and �HGJI

is a learning parameter. Reversing the sign of the adaptive
gain, i.e., replacing

1 � in (1) by
, � , yields a principal

(signal) subspace extraction algorithm.



3. YANG AND KAVEH ADAPTIVE SUBSPACE
ESTIMATION ALGORITHM

As shown in [1] the iterative maximization of the cost
function KML ��N(O � ) % � ) 	

(2)

subject to ) % ) �/P (3)

converges to the signal subspace of C. This maximization
can be achieved by using the gradient-descent technique,
that is ) �+*-,Q.R	 � ) ��*(	S, �ST�U �+*0	 (4)

where �=G�I and the gradient is given by

T U �WVX� ) (5)

By replacing the gradient and the correlation matrix by their
corresponding instantaneous estimates, (4) becomes) ��*Y,/.�	 � ) �+*0	;, V&�-� ��*(	 � % ��*0	 ) �+*0	

(6)

Condition (3) can be satisfied by using Gram-Schmidt
orthogonalization at each iteration [1]. However, this algo-
rithm presents a number of drawbacks [4]:Z Extremely high computational complexityZ Slow convergenceZ Stability problems.

In the following, we derive a new algorithm which is still
based on Rayleigh’s quotient, but without the previously
mentioned drawbacks. We shall call it the fast Rayleigh’s
quotient based (FRQ) algorithm.

4. FRQ ADAPTIVE SUBSPACE ESTIMATION
ALGORITHM

The proposed algorithm consists of (6) plus an orthogonal-
ization step of the weight matrix to be performed at each
iteration. Using informal notation, we can write:) ��*[,/.�	]\ � ) ��*[,/.�	^� ) % ��*Y,/.�	 ) �+*Y,Q.R	F	�_-`Fa �

(7)

where
� ) % ��*b,c.�	 ) �+*b,c.R	F	 _Y`da �

denotes an inverse square
root of

� ) % ��*e,�.�	 ) �+*C,�.�	d	
. To compute the latter,

we use the updating equation of
) ��*e,f.�	

. Keeping in
mind that

) �+*0	
is now an orthogonal matrix and setting6C�+*0	 � ) % �+*0	 � �+*0	 , we have) % �+*Y,Q.R	 ) �+*Y,Q.R	 �hg ,jiM67�+*0	(6 % ��*(	 " � , � �lk � �+*0	mkm�n'�hg ,joYo %Ep

(8)

where g is the identity matrix, and
oqD��V$r � , � � k � �+*0	mk � 6C��*(	 .

Let us set st� i � �F.7, � k � �+*0	mk � 	 . Then, using [11]

� g ,HoYo % 	 _Y`da � �Qg ,q� .
r .7,qk^oCk � 1�.�	

oYo %k^oCk �;u
we obtain� ) % �+*-,Q.R	 ) ��*[,/.�	F	 _Y`da � �/g ,jv-�+*0	(67�+*0	(6 % ��*0	 u (9)

where
v-��*0	 D� .kn67�+*0	mk � � .

r .7, s ��*0	mkn67�+*0	mk � 1w.R	 . Substitut-

ing (9) into (7) and using the updating equation of
) ��*X,=.�	

leads to) �+*-,/.�	 � � ) �+*0	;, V&�-� ��*(	06 % �+*0	F	m� g ,jv-�+*0	06C�+*0	(6 % �+*0	F	� ) ��*0	;, � : ��*(	06 % �+*0	 u (10)

where : ��*0	ED� v-�+*0	 ) �+*0	(6C��*0	dx � , Vy� ��*0	 " .7,Hv-��*(	bkn6C��*0	mk^�m' .
5. NORMALIZED FRQ (NFRQ) ALGORITHM

At iteration
��*[,/.�	

, the cost function (2) can be written asK L �+*[,/.�	 �/N(O � ) % �+*Y,Q.R	 � ) �+*Y,Q.R	F	
(11)

Now injecting (4) into (11) and using a variable stepsize� ��*(	 , we can writeKML �+*Y,Q.R	 � N(O � " ) % �+*0	-, � �+*0	 Tt%U �+*0	(' �z" ) �+*0	, � ��*0	 T�U ��*(	('{	� KML �+*0	-, V&� ��*(	 N(O � ) % �+*0	 �tT�U ��*0	F	, � �X�+*0	 N(O � TE%U ��*0	 �tT�U �+*0	F	
(12)

If C is strictly positive definite, then

N(O � T % U �+*0	 �tT�U ��*(	d	 GJI uY| TtU �+*0	~}�qI (13)

This means that
K L � � 	 , which is a quadratic function of� ��*(	 , has a global minimum. If we assume that

K L �+*0	
is

independent of � �+*0	 , then� KML ��*[,/.�	� � �+*0	 � V&N(O � ) % �+*0	 �tT�U ��*0	F	, V&� ��*(	 N(O � Tt%U �+*0	 �tT�U �+*0	d	 (14)

Hence, the optimal stepsize can be found by setting (14) to
zero. This leads to

�[�9�^� �+*0	 � 1 N(O � ) % �+*0	 �tT U ��*(	d	N(O � T % U �+*0	 �tT U ��*(	d	 (15)

However, we are interested only in the values of � that
maximize the cost function. This can be achieved in a



suboptimal way by replacing � �+*0	 in (12) by the negative
value of (15). In this case, we getKML ��*[,/.�	 � KML ��*(	S, V N(O �X� ) % �+*0	 �tT�U ��*0	F	N(O � T % U �+*0	 �ET�U �+*0	F	, N(O �l� ) % �+*0	 �ET�U �+*0	F	N(O � T % U ��*(	 �tTtU �+*0	F	

(16)�-� K L �+*-,/.�	�1 K L ��*(	 � � N(O �l� ) % �+*0	 �tT�U ��*0	F	N(O � T % U �+*0	 �ET�U �+*0	F	D� � �+*0	
(17)

We can easily notice that � �+*0	]� I orKML �+*Y,Q.R	�1 KML �+*0	�� I (18)

Therefore, the MSE will increase at each iteration (maxi-
mization) by an increment of � �+*0	 . Note that the MSE will
increase even if we replace C and the gradient by their cor-
responding estimates. In practice, the correlation matrix C
and the gradient are replaced by their instantaneous values.
In this case, we obtain�

��� �(�^� �+*0	 � .
V k � �+*0	bk � (19)

Thus, NFRQ algorithm can be written asZ Initialization of the algorithm:) � I 	 � any arbitrary orthogonal matrix.Z Algorithm at iteration
*
:67�+*0	 � ) % �+*0	 � ��*0	�
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where I � � ��. and

�
is a small positive constant which

improves the stability of the algorithm.

6. SIMULATION-RESULTS

In the following, we choose � �+*0	 to be a sequence of inde-
pendent jointly-Gaussian random vectors with covariance
matrix

���
���
�
I�p ��I$p i I$p���I$p �I�p i I$p ��I$p ��I$p iI�p5��I$p � . p I�I$p �I�p ��I$p i I$p ��I$p �

�m��
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� ��V and as recommended in [9]
) � I 	 � � , where�c¡+¢ £=� ¤ �¦¥z1�*0	 . As in [6], we calculate the ensemble

averages of the performance factors

s �+*0	 � .
Ob§

¨0©ª¨¬« ` tr ­ ) %¨ �+*0	0® `°¯ ® % ` ) ¨ ��*0	F±
tr ­ ) %¨ �+*0	0® � ¯ ® %� ) ¨ ��*0	 ± u (21)

² ��*0	 � .
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where the number of algorithm runs is Ob§´� i I , O indicates
that the associated variable depends on the particular run,k p k ³ denotes the Frobenius norm, and

® ` (respectively® � ) is the principal
���µ1q�
	

-dimensional (respectively
minor P-dimensional) subspace. Figure 1 compares the
performance of OJA with our algorithm. As we can see
NFRQ converges practically at the same speed as OJA for�w�QI$p IX� . However, it ensures the (perfect) orthogonality of
the signal subspace vectors as shown by ² curve. For higher
values of � , NFRQ converges much faster at the expense,
however, of an increased steady state error. Whereas, when� is increased, OJA algorithm just diverges. In general, our
algorithm behaves much better than (1) and do not suffer
from numerical instability. Moreover it has a comparable
computational complexity, i.e.,

�������
	
.

7. CONCLUSION

In this paper, we proposed a new fast adaptive algorithm
for signal subspace estimation that is based on Rayleigh’s
quotient. The proposed algorithm converges faster than OJA
and is numerically much more stable. In addition, it has
a lower computational complexity (

�������
	
) as compared

to Yang et al. algorithm and ensures the orthogonality of
the subspace eigenvectors at each iteration. It is worthwhile
to note that the same procedure can be used to develop a
fast adaptive noise subspace estimation algorithm based on
Rayleigh’s quotient as well.
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