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ABSTRACT

In this paper, we propose a new adaptive algorithm for
subspace estimation and tracking that isbased on Rayleigh’s
quotient. This algorithm allows the estimation of the signal
subspace of avector sequence. It hasanumber of interesting
properties such as a low computational complexity, a fast
convergence, orthogonality of the subspacevectorswhichis
ensured at each iteration and a good numerical stability. As
will be shown, the proposed agorithm outperforms Qja’s
algorithm.

1. INTRODUCTION

Fast estimation and tracking of the signal subspace of a
sequence of random vectorsis the key-stone to many appli-
cations that span a variety of areas of information process-
ing such as data compression, parameter estimation, pattern
recognition, neural networks and, in particular, wireless
communications, among others[1]-[2].

Subspace estimation can be performed using the batch
eigenvalue decomposition (EVD) of the (estimated) corre-
lation matrix or the singular value decomposition (SVD) of
the data matrix [3]. However, these two approaches are not
suitable for adaptive applications where the required repeti-
tive estimation of the subspace can be areal computational
burden.

In the literature, many fast algorithms have been pro-
posed [4]. These can be classified, depending on their
computational complexities, as [7] O(N2P), O(N?) or
O(NP) where N x P represents the size of the signal (or
noise) subspace weight matrix to be estimatedand P < N.
Among the least complex agorithms (i.e. O(NP)), we
can mention OJA agorithm which was first developed in
neural networks area [8]. One of the main advantages of
OJA isits ability to estimate both signal (or principal) and
noise (or minor) subspaces by simply reversing the sign

of the learning parameter, say 3. However, unless g is
arbitrarily small, OJA algorithm diverges. Moreover, the
orthogonality of the weight matrix, i.e. the orthogonality
between the P subspace column vectors, is not (perfectly)
ensured as shown in the simulations. The latter, however, is
avery desirable property in many applications[10].

In this paper, we first present a fast review of OJA
algorithm. Then, we introduce Rayleigh’'s quotient based
adaptive subspace estimation agorithm as developed by
Yang and Kaveh in [1]. The latter uses Gram-Schmidt
orthogonalization at each iteration. Accordingly, it has a
very high computational complexity. Next, we derive a
fast algorithm based on Rayleigh’s quotient followed with
its normalized version. Finally, we present the simulation
resultsof the proposed algorithm along with some comments
and concluding remarks.

2. REVIEW OF OJA ALGORITHM

Consider the problem of extracting the signal (or noise) sub-
space spanned by the sequence {r(k)} of dimension P < N
which is assumed to be the span of the P signal (or noise)
eigenvectors of the covariance matrix C = E[r(k)rH (k)].
To solve this problem, several subspace extraction algo-
rithms have so far been proposed [5]-[9]. The minor
subspace extraction algorithm by Oja et al. [8] can be
formulated as

W(i+1) = W(i) — B [r(i)y™ (i) — W(i)y(@)y"™ (i)]
= W(i) — Bp(i)y" (i) (6h)

where W (i) € R¥*F is the minor subspace estimate,
A

y(i) = WH(i)r(i), p(i) = (v(i) - W(i)y(i)),and 8 > 0
is alearning parameter. Reversing the sign of the adaptive
gan, i.e, replacing —g in (1) by +2, yields a principal
(signal) subspace extraction algorithm.



3. YANG AND KAVEH ADAPTIVE SUBSPACE
ESTIMATION ALGORITHM

As shown in [1] the iterative maximization of the cost
function
Jw = tr(WHECW) (2)
subject to
WHEW =71 (3)
converges to the signal subspace of C. This maximization

can be achieved by using the gradient-descent technique,
thatis

W(i+1) = W(i) + V(i) (4)
where 8 > 0 and the gradient is given by

VvV, = 2CW 5)

By replacing the gradient and the correl ation matrix by their
corresponding instantaneous estimates, (4) becomes

W(i+1) = W(5) + 20r(i)r? (i)W (i) (6)

Condition (3) can be satisfied by using Gram-Schmidt
orthogonalization at each iteration [1]. However, this algo-
rithm presents a number of drawbacks [4]:

e Extremely high computational complexity
¢ Slow convergence
o Stability problems.

In the following, we derive a new agorithm which is still
based on Rayleigh’s quotient, but without the previously
mentioned drawbacks. We shall call it the fast Rayleigh’'s
quotient based (FRQ) algorithm.

4. FRQ ADAPTIVE SUBSPACE ESTIMATION
ALGORITHM

The proposed algorithm consists of (6) plus an orthogonal-
ization step of the weight matrix to be performed at each
iteration. Using informal notation, we can write:

W(i+1) = Wi+ )W+ )W+ 1) (7)

where (WH (i41)W (i+1))~'/2 denotesan inverse square
root of (WH(i + 1)W (i + 1)). To compute the latter,
we use the updating equation of W (i + 1). Keeping in
mind that W (3) is now an orthogonal matrix and setting
y(i) = WH(i)r (i), we have

I+ 4y(@)y?(9)[8 + 52|l (d)]|?]
I+ xxH,
(8)

WH@G+ )W (i + 1)

whereI istheidentity matrix, andx = 2+/8 + B2[|r (i) [y ().
Letusset p = 48(1 + S||r(i)||?). Then, using [11]

1 xxH
T+ xx7)=12 =1+ ( -1) ,
NAEAEE [I[|?

we obtain

(WG + )W+ 1)) 2 =T+ 7(6)y@)y" (),  (9)

Na 1 1 3 _—
WhereT(l)_Hy(i)H?( T OITOIE 1). Substitut

ing (9) into (7) and using the updating equation of W (i + 1)
leadsto

W(i+1) = (W()+28c()y™ (i) +7(0)y @)y (i)
= W(i) + 8p(i)y™ (i), (10)

where B(i) = ()W (i)y(§)/5 + 2r(i)[L + (i) Iy (i)||]

5. NORMALIZED FRQ (NFRQ) ALGORITHM
Atiteration (i + 1), the cost function (2) can be written as
Jw(i+1)=tr(WH (G +1)CW(i +1)) (11)

Now injecting (4) into (11) and using a variable stepsize
B(7), we can write

Jw(i+1) tr((WH (i) + B(0)V§ (1)]C[W (i)
BV (@)])
Jw (i) + 2B(0)tr (W (i)CV (i)
B2(0)tr (V3 (i)CV 4 (i)

+ 0+

(12)
If C issdtrictly positive definite, then

tr(VE()CV 5(i)) >0,V V(i) #0 (13)

This means that Jw (3), which is a quadratic function of
B(7), has a globa minimum. If we assume that Jw (i) is
independent of 5(3), then

OJw (i + 1)

980) 2tr(WH (i)CV (7))

+ 28@0)tr(VH(H)CV ()

(14)

Hence, the optimal stepsize can be found by setting (14) to
zero. Thisleadsto

tr(WH()CV (i)
tr(VI())CV 4 (i)

ﬂopt (Z) = (15)

However, we are interested only in the values of 3 that
maximize the cost function. This can be achieved in a



suboptimal way by replacing 8(7) in (12) by the negative
value of (15). In this case, we get

. _ ) r2(WH(i)CV ;(4))
Jw(i+1) = Jw(i) tr(VH(z)CVJ )
L rWHG )TV (i)
(VH(H)CV. (1))
tr*(WH (@) CV (()1)6)
. N (WH (i
— Jw(z + 1) - Jw(l) —A 3 tT(V?(i)CVJ(l))
ERG0)
(17)
We can easily noticethat e(i) > 0 or
Jw(i+1)—Jw() >0 (18)

Therefore, the MSE will increase at each iteration (maxi-
mization) by an increment of e(¢). Note that the MSE will
increase even if we replace C and the gradient by their cor-
responding estimates. In practice, the correlation matrix C
and the gradient are replaced by their instantaneous values.
In this case, we obtain

Bsopt (7/) = !

2[|r(d)[?
Thus, NFRQ algorithm can be written as

(19)

¢ Initialization of the algorithm:

‘W (0) = any arbitrary orthogonal matrix.

e Algorithm at iteration :
y(i) = WH(i)r(i)

~ N 8
Gront) = 3l 17

() = ABoop (i) (1 + Boop @) lIr(0)]1?)
1 1

O = hor i emar

(
B() = TOWOYE)/Boopt i) +
2r(i) (1 + 7(0) ly (0)|*)
W(i+1) = W)+ Bope())BG)y" (i)

where0 < 8 < 1 and v isasmall positive constant which
improves the stability of the algorithm.

6. SSIMULATION-RESULTS

In the following, we choose r(i) to be a sequence of inde-
pendent jointly-Gaussian random vectors with covariance

matrix
09 04 0.7 0.3
04 0.3 0.5 04
C= 0.7 05 1.0 0.6 (20)

03 04 06 09

P = 2 and as recommended in [9] W(0) = D, where

D;; = 6(j —i). Asin [6], we calculate the ensemble
averages of the performance factors
L tr (WEHGE, « EffW,. (1))
) = = 21
p(0) roztr WHzE2*EHW @)’ (1)
(@) = RanH YW,(6) - 1|I%, (22)

where the number of algorithm runsisrg = 40, r indicates
that the associated variable depends on the particular run,
||.||= denotes the Frobenius norm, and E; (respectively
E,) is the principal (N — P)-dimensional (respectively
minor P-dimensional) subspace. Figure 1 compares the
performance of OJA with our algorithm. As we can see
NFRQ converges practically at the same speed as OJA for
B = 0.03. However, it ensuresthe (perfect) orthogonality of
the signal subspace vectors as shown by » curve. For higher
values of 3, NFRQ converges much faster at the expense,
however, of an increased steady state error. Whereas, when
B isincreased, OJA algorithm just diverges. In general, our
algorithm behaves much better than (1) and do not suffer
from numerical instability. Moreover it has a comparable
computational complexity, i.e., O(N P).

7. CONCLUSION

In this paper, we proposed a new fast adaptive agorithm
for signal subspace estimation that is based on Rayleigh's
quotient. The proposed algorithm convergesfaster than OJA
and is numerically much more stable. In addition, it has
a lower computational complexity (O(N P)) as compared
to Yang et al. algorithm and ensures the orthogonality of
the subspace eigenvectors at each iteration. It isworthwhile
to note that the same procedure can be used to develop a
fast adaptive noise subspace estimation algorithm based on
Rayleigh’'s quotient as well.
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Fig. 1. Average behaviors for signal subspace estimation (Proposed and OJA): evaluation of p and 7.
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