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ABSTRACT
Hidden Markov models have been used in a wide variety of wavelet-
based statistical signal processing applications. Typically, Gaus-
sian mixture distributions are used to model the wavelet coeffi-
cients and the correlation between the magnitudes of the wavelet
coefficients within each scale and/or across the scales is captured
by a Markov tree imposed on the (hidden) states of the mixture.
This paper investigates correlations directly among the wavelet
coefficient amplitudes (sign � magnitude), instead of magnitudes
alone. Our theoretical analysis shows that the coefficients dis-
play significant correlations in sign as well as magnitude, espe-
cially near strong edges. We propose a new wavelet-based HMM
structure based on mixtures of one-sided exponential densities that
exploits both sign and magnitude correlations. We also investi-
gate the application of this for denoising the signals corrupted by
additive white Gaussian noise. Using some examples with stan-
dard test signals, we show that our new method can achieve better
mean squared error, and the resulting denoised signals are gener-
ally much smoother.

1. INTRODUCTION

In most wavelet-based statistical signal processing techniques, the
wavelet coefficients are assumed to be either independent or jointly
Gaussian. This assumption is unrealistic for many real-world sig-
nals. Non-Gaussian statistics of the wavelet coefficients are con-
sidered in [1, 2]. Statistical dependencies between the wavelet
coefficients are discussed in [1, 3], and the wavelet-based hidden
Markov model (HMM) is proposed for statistical signal process-
ing and analysis. The wavelet-based HMM captures correlations
between the magnitudes of neighboring (in space/time) wavelet
coefficients across scales.

Despite the success of the wavelet-based HMM in denoising
applications [1], it does have one significant deficiency, which we
address in this paper. Our theoretical analysis in Section 3 shows
that there is a strong correlation in signs as well as the magni-
tudes of coefficients. Sign (or phase) correlation is not considered
in the original wavelet-based HMM. We investigate a new model
that account for both sign and magnitude correlations and apply
the model to signal denoising. It is shown that the new model gen-
erally performs as well as or better than the wavelet-based HMM
of [1]. In some cases, the improvement is quite significant.

The paper is organized as follows. In Section 2, we briefly
review the wavelet-based HMM’s. In Section 3, first we propose
a new probabilistic model for the individual wavelet coefficients
in which, instead of Gaussian distributions, one-sided exponential
distributions are used as the components of the mixture distribu-
tions. We then use a hidden Markov tree model to capture the

Fig. 1. Two-state, zero-mean Gaussian mixture model

dependencies between the magnitudes and signs of the wavelet
coefficients in adjacent scales. In Section 4, we devise a novel
Expectation-Maximization (EM) algorithm to train the HMT model
using a noisy observation of the signal. Since our new model in-
volves non-Gaussian component densities, the EM algorithm is
significantly different than that devised in [1]. In Section 5, we em-
ploy Maximum A Posteriori (MAP) and Conditional Mean (CM)
estimators based on our new model for signal denoising. Standard
test signals are used to demonstrate the performance of our new
method, and the results show our new approach generally performs
as well or better than the wavelet-based HMM in [1]. Finally we
draw some conclusions in Section 6.

2. REVIEW OF WAVELET-BASED HMM’S

In [1], a framework for statistical signal processing was developed
in which the non-Gaussian statistics and statistical dependencies
of the wavelet coefficients encountered in the real-world signals
are concisely modeled using wavelet-domain HMM’s [4]. In the
design of these HMM’s, primary and secondary properties of the
wavelet transform are taken into account. The primary properties
of the wavelet transform are locality, multiresolution, and com-
pression. The last property states that the wavelet transforms of
real-world signals tend to be sparse. In order to take into account
this property, in [1] the a mixture Gaussian distribution is proposed
to model wavelet coefficients. This model, shown in Fig. 1, con-
sists of two Gaussian distributions with zero mean and two dif-
ferent variances, each one selected according to some probability
mass function assigned to the two states, which serve as indicators
for the two component densities.

The secondary properties of the wavelet transform are cluster-
ing and persistence. The clustering property states that if a particu-
lar wavelet coefficient is large/small, then adjacent coefficients are
very likely to also be large/small. The persistence property states
that large/small values of wavelet coefficients tend to propagate
across scales. In order to take into account these two properties,



Fig. 2. Hidden Markov chain (left) and hidden Markov tree (right)
models

in [1] the use of a probabilistic graph that links the wavelet state
variables either across time using a chain, or across scale using a
tree, is suggested. These models are called Hidden Markov Chain
Model and Hidden Markov Tree (HMT) Model, respectively, and
are shown in Fig. 2.

Once the model structure is specified, the Expectation Maxi-
mization (EM) algorithm can be used to estimate the parameters of
the model [1]. Using this algorithm, the multi-dimensional maxi-
mum likelihood estimation problem can be decomposed into sev-
eral one-dimensional problems with an iterative nature. This way,
the complexity of the maximum likelihood estimator is strikingly
reduced, yet acceptable performance can be achieved.

3. NEW MODEL

While the original wavelet-based HMT [1] adequately captures
the persistence of large/small magnitude (or energy) coefficients
across scale, it does not reflect correlation in signs of the coeffi-
cients. However, it turns out that the signs of wavelet coefficients
can be strongly related, as demonstrated in the following analysis.
In Fig. 3, assuming that the signal under consideration has only
one rising/falling edge in the support of a wavelet at a particular
scale, the Haar wavelet coefficients in that scale and the next scale
are compared. According to this figure, it can be observed that
with the above assumption, the signs of the wavelet coefficients
in these two neighboring scales are highly correlated. In fact, if
the sign of the wavelet coefficient in the coarser resolution is pos-
itive/negative, then so is the sign of the wavelet coefficient in the
finer resolution (or the coefficient is zero). The high degree of
correlation between the signs of the wavelet coefficients is a mo-
tivation for us to consider a mixture distribution for the wavelet
coefficients that consists of one-sided distributions, e.g., exponen-
tial densities. This way, we will be able to capture the correlation
between the signs of the wavelet coefficients in the adjacent scales,
and according to the observed high correlation, achieve better per-
formance in denoising the noisy signals.

Fig. 4 shows a mixture distribution consisting of four one-
sided exponential distributions. The conditional probability den-
sity functions for the wavelet coefficients at node

�
, given the state

Fig. 3. Wavelet coefficients for adjacent scales

variable are given as follows:
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As mentioned earlier, we will use a hidden Markov tree model
(shown in Fig. 2) for the wavelet transform. Assuming that we
are using a full-scale wavelet transform for an N-point signal, this
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We will collect these parameters in a model parameter vector, P .
In the next section we will explain a method for estimating

these parameters (except for 1 , the number of states, which is
usually chosen to be 2 or 4). It should be emphasized that in Fig. 3
it is assumed that the signal under consideration has only one ris-
ing/falling edge in the support of the wavelet in the coarser resolu-
tion. If this condition is satisfied, then the wavelet coefficients in
the higher resolutions are highly correlated (in their sign) with the
wavelet coefficient in this resolution. Therefore, because edges
or singularities tend to be somewhat isolated signal features, we
expect that the mentioned correlation will be most significant at
higher resolutions (finer scales).

4. TRAINING THE HMT MODEL

As mentioned earlier, we will use the noisy observations to esti-
mate the parameters of the model. In order to do this, we first
need to find the conditional probability density functions of the
noisy wavelet coefficients given the state parameter at the specific



Fig. 4. Four-state, one-sided exponential mixture model

node. Assuming that the original signal is corrupted by an addi-
tive white Gaussian noise with known variance ��� , and noting that
the wavelet transform is orthonormal, the

�
-th noisy wavelet coef-

ficient, � � , can be written as follows:
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where
� �

is the wavelet coefficient of the (noise-free) signal. With
this assumption, and using the conditional probability density func-
tions for the wavelet coefficients of the original signal given in the
previous section, it can be easily shown that the (state-)conditional
probability density functions for the noisy wavelet coefficient at
node

�
are given as follows:���>�H� � �
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where
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+* . Now, denoting by y, s, and P ,
the vectors of observed noisy wavelet coefficients, hidden states,
and model parameters, respectively, and using the Maximum Like-
lihood (ML) criterion, the parameter estimation problem can be
formulated as the following optimization problem:,P �.-�/10324-�5687:9 0 �<; 	�= 
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In general, this problem is a very complicated and difficult one
to solve, because in this estimation process, we are also character-
izing the states S, of the nodes, which are unobserved. However,
given the values of the states, the ML estimation of the param-
eter vector is much simpler. Therefore, we use the iterative EM
approach [5, 6], which jointly estimates both the model parame-
ters P , and probabilities for the hidden states S, given the observed
noisy wavelet coefficients, Y.

First, we define the set of complete data, X, as @ � 	�A -?B � .
Note that the likelihood function for the complete data can be ex-
pressed in terms of the conditional pdf of Ygiven S, and the pmf
of S, given the parameter vector P , as follows:��C 	�D 
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Then, instead of maximizing the log-likelihood function of Y, we
maximize the log-likelihood function of X. But since the states are

unknown, we take the expected value of the log-likelihood with
respect to the random variable S, and since we need to know the
parameter vector P to calculate this expectation, we use the current
estimate for the parameter vector, PWV , in calculating the expecta-
tion. This results in an iterative algorithm with two steps in each
iteration: 0 E-step: CalculateX 	 P - PMV �J�.YZE\[ 7:9 0'��C 	�D 
 P �
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For calculating the
X

function in (9), we need to know the
a posteriori state probabilities. These probabilities are calculated
using the Upward-Downward algorithm explained in [1] and [6].

In the M-step, the
X

function, calculated above, is maximized
over the a priori pmf of the root state, the state transition prob-
abilities, and the parameters of the conditional pdf’s. The root
state pmf and the transition probabilities can be calculated using
Lagrange multipliers, and the results are given in [1].

Maximizing the function
X

with respect to the parameters of
the conditional pdf’s,

� ��� �
, reduces to the following maximization

problem:
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where
s � u denotes the set of indices of all nodes that are at the

same scale as node
�
. Unlike the Gaussian mixture case (which

admits a closed-form solution), in the case of mixture exponential
distributions, this maximization problem has no analytic solution.
However, the maximization above can be solved very efficiently
using numerical methods (since it is simply a one-dimensional op-
timization problem).

As the result of the M-step, we will have a new and more re-
liable estimate for the parameter vector, and as we increase the
number of the iterations, more and more reliable estimates can be
achieved. A convergence criterion can be used to decide whether
to continue the iterations or stop, in which case the result of the
M-step of the last iteration is taken as the estimate of parameter
vector.

5. DENOISING

In this section, assuming that we have the model parameter vector
(or a good estimate of it), we will estimate the wavelet coefficients
of the original signal from the noisy wavelet coefficients. It can be
easily shown that the a posteriori probability density function of
each (noise-free) wavelet coefficient can be written as follows (for
s even):
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Fig. 5. Denoising the ’Blocks’ test signal

We obtain a similar expression for the case
L

odd. The MAP esti-
mate for

�
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Either of the above estimates can be used to find the denoised

version of the wavelet coefficients from the noisy version, and then
the denoised signal can be calculated as the inverse wavelet trans-
form of the denoised wavelet coefficients. Figs. 5 and 6 com-
pare the performance of the proposed algorithm with the method
given in [1], in denoising the standard test signals of ’Blocks’, and
’Doppler’, respectively. As can be observed from these figures,
in most of the cases the proposed algorithm has improved Mean
Squared Error (MSE), and the resulting denoised signals are much
smoother and have a significantly better visual quality with the
same number of states and same wavelet.

Fig. 6. Denoising the ’Doppler’ test signal

6. CONCLUSIONS

We observed that there is a high correlation between the signs of
the wavelet coefficients of a signal in adjacent scales. We used
one-sided distributions as components of a mixture distribution as-
signed for the individual wavelet coefficients, and then we used a
hidden Markov tree model to capture the dependencies between
the magnitudes and signs of the wavelet coefficients in adjacent
scales. We used the iterative expectation-maximization algorithm
to train the model directly from the noisy data. Using standard test
signals, we showed that the proposed method achieves better MSE
in denoising compared to the methods based on Gaussian mixture
distributions with the same number of states and complexity, and
the resulting denoised signals are generally much smoother.
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