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ABSTRACT

In this paper, we use Bayesian belief networks to sta-
tistically model the trends for event detection. We auto-
matically detect non-rigid object trajectories for object mo-
tion units. Then, we use dominant and secondary trajec-
tories of a single object in several consecutive motion units
to understand semantic actions or those of more than one
object to recognize semantic interactions between objects.
We demonstrate sample Bayesian networks to detect events
and extract the event descriptions, such as “catch the ball”,
“throw the ball” and “walk”.

1. INTRODUCTION

Visual indexing and retrieval methods using low-level fea-
tures are not generally suitable for semantic retrieval. San-
tini and Jain [1] described querying in visual databases as
an ill-posed problem and they proposed a solution, staying
in the domain of low-level features, using better similarity
measures and user feedback. We suggest a semantic model
to effectively retrieve high-level information in image and
video databases [2].

In still images, extracting objects, understanding the
spatial relationships between objects and recognizing the lo-
cation among several alternatives will be sufficient for most
purposes. A Bayesian network based method for semantic
object extraction in images was suggested by [3].

For video, semantic object detection can be performed
by object segmentation and tracking methods in the lit-
erature. Furthermore, the need to detect events in video
arises due to the temporal dimension. Multi-agent event
detection based on Bayesian networks was proposed by In-
tille in his Ph.D. thesis [4]. He used Bayesian networks to
recognize football plays using object trajectories. The tra-
jectories were drawn by hand and the recognition was based
on the selection of the play using the models of the plays
in the database. Multi-level event detection using neural
networks and inference rules in wildlife documentaries was
introduced by [5].

In this paper, we propose a Bayesian network based
method to detect semantic video events and extract their
descriptions using object trajectories. The trajectories are
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selected automatically from MPEG-4 sequences within a
temporal object motion unit [6]. We select trajectories
based on both the dominant and the secondary, but seman-
tically important, motion of objects. The extracted trajec-
tories are input to evidence detectors that also use object
reaction units [6] and the decisions about semantic events
are given by Bayesian networks. Furthermore, we will also
mention using a semantic model for event detection that
will help indexing process.

2. BAYESIAN NETWORKS

Bayesian networks are directed acyclic graphs (DAGs) rep-
resenting the causal dependencies between the nodes that
hold variables [7]. Bayesian belief networks are mainly
used as a knowledge representation tool in artificial intelli-
gence and expert systems due to their ability to respond to
changing conditions easily. Another important property of
Bayesian networks is their strength in causal reasoning that
is necessary to model actions, explanations, counterfactuals
and preferences [8].

The knowledge of the domain is used to construct the
network. The inherent uncertainty in the evidences that can
be collected from spatio-temporal data set is represented
by the prior probabilities of some variables and conditional
probabilities between the variables. When an evidence is
observed, the evidence is inserted to the network and the
posteriori probabilities are calculated using model parame-
ters, priors and conditional probabilities. Certain indepen-
dence relationships between variables are assumed to exist
to efficiently calculate the posteriors when an input variable
is observed [7].

The model parameters are set by either training the
model or using expert knowledge. The details of the Bayesian
networks can be found in [7, 8, 9].

3. LOW-LEVEL EVIDENCES

The low-level evidences are input to Bayesian networks. We
use object motion as our primary low-level evidence. The
evidences are found for object motion or object reaction
units. The motion characteristics of the participants of each
unit are presented to the network in the form of trajectory
data.



3.1. Object Motion and Reaction Units

The low-level object motion and reaction units are found
according to [6]. Elementary motion units are the temporal
segments of object life-span where object motion is coher-
ent. The breaks in the motion generates new motion units.
The reaction units are found similarly, but for two objects.
The above motion and reaction units do not have semantic
meaning. However, the consecutive motion units or reaction
units form a semantically meaningful action units for one
object, such as “walk”, or interaction units for more than
one object, such as “throw the ball”. Individual action or
interaction units and semantic composition of any number
of action and interaction units are regarded as events.

3.2. Trajectories

The temporal segments of motion and reaction units form
the boundaries for trajectory information. The trajectory
data within the segment is fed to the appropriate network
for the semantic meaning.

We differentiate two different trajectory types. The first
one is the dominant trajectory of the object. The dominant
trajectory can be found by calculating the coordinates of
the centroid or the same part of the object in every frame.
Moreover, a semantic object, if it is non-rigid, will have mo-
tion deviating from the dominant motion and the semanti-
cally important deviations form the secondary trajectories.
We provide a general automatic trajectory extraction given
the rough sketch of the object boundaries for the secondary
and dominant trajectories.

The dominant trajectory is found by collecting the cen-
troids of the object region for all frames. The method in
Figure 1 is used to extract secondary trajectories and it
starts with dense motion estimation of the frames in an
elementary motion unit followed by the estimation of re-
gion (object) motion parameters in terms of 6-parameter
affine model [10]. Then, the region affine parameters are
compared to individual pixel velocities for each frame in
the temporal segment and each individual pixel counter,
number of deviations (Nge,) from dominant motion within
a motion unit, is increased if its velocity value is deviat-
ing from the dominant motion. For each pixel, another
counter, N,¢q, is defined to hold the number of frames the
pixel is included in the object region in the given motion
unit. The consistently deviating pixels are found by thresh-
olding Ngey/Nreg value for each pixel. The connected re-
gions are found by a labeling algorithm and the velocity
and the size of each region is calculated to find important
regions. Finally, the centroids of each region for each frame
is calculated to give the secondary trajectory data.

Figure 2 shows the results after important steps of the
algorithm. The counter image constructed from the region
pixels in the temporal motion unit is given in Figure 2(a).
The pixels appearing in object region for all frames are
shown as the brightest pixels since the counter for them
(INreg) is the highest. Figure 2(b) shows the counter image
for Nge,. The counter for deviating pixels are increased for
each frame. However, a pixel may go out of object region for
several frames. Thus, the normalization is done by dividing
Ngey t0 Nyeg where Ny¢4 is nonzero. After thresholding and
filtering out small regions, the regions having enough size
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Figure 1: The method to find secondary trajectories

and velocity are kept. For the figure, the algorithm keeps
only one region that stands for hand motion and eliminates
others.

4. BAYESIAN NETWORKS FOR EVENT
RECOGNITION

Events are composed of object action and interaction units.
Action units are defined as semantic object motion units
and interaction units are semantically meaningful object
reactions. “Walking” and “running” are the events con-
taining only one object. Thus, an action unit of one object
may form an event. On the other hand, “throwing the ball”
forms an interaction unit between two objects and it is also
an event. Finally, “penalty kick” is a composite event con-
sisting of player’s “running” action unit and “ kicking the
ball” interaction unit of the player and the ball.

‘We constructed three Bayesian networks to detect events
and extract their descriptions in Children, Stefan and Hall
MPEG-4 sequences. We manually determined the prior
and conditional probabilities. However, the use of pre-
annotated videos and semantic model can help the auto-
matic adjustment of conditional probabilities.



(b)

(d)

Figure 2: a) N,y image b) Nge, image c) Connected regions
d) Small regions eliminated

4.1. Walk, Run, Stationary

The first Bayesian network uses dominant object trajectory
to decide whether the object is walking, stationary, running,
sitting down or standing up. The network uses only domi-
nant trajectories within object motion units.
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Figure 3: Bayesian network for walk, run and stationary
events

The inputs to the network are shown as the first layer in
Figure 3: TrajVyExists, SpeedFast and TrajYDirUP. The
inputs are assumed to have equal a priori beliefs, such as
P(Vy exists) = 0.5 and P(Vy does not exist) = 0.5. The
first and third inputs use the projection of the trajectory
on the Y axis. Denoting N as the number of points in the
trajectory unit and T as the trajectory, we first smooth the
trajectory by 3-point averaging to suppress noise effects,
then, we find the velocity of the smoothed trajectory along
Y axis as in Equation 1.
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The direction is found by counting the direction change
in the smoothed trajectory data and comparing it with the
weighted velocity to finalize the decision. The SpeedFast
evidence detector calculates the velocity of the smoothed
trajectory using both X and Y components. The low-level
evidence detectors return three outputs: observed, not ob-
served and not enough evidence. Then, the network uses
the observations, prior probabilities and conditional proba-
bilities to find posteriors.

‘We considered only trajectories to collect evidences, how-
ever, the person walking or running towards the camera,
such as the second person walking towards the camera in
the Hall sequence, cannot be detected using only trajecto-
ries. For these circumstances, using the change in the region
size may be a solution.

4.2. Hands Up, Down

This Bayesian network uses both types of object trajecto-
ries to decide whether hand movement is up or down. The
secondary trajectory direction, velocity and the distance
between the dominant and secondary trajectories are used
as low-level evidences (Figure 4). The low-level evidences
SecTyDirUP and SecTSpeedFast use the corresponding al-
gorithms defined in the first network with secondary trajec-
tory data.
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Figure 4: Bayesian network for hands up and hands down

Defining Dist, = Zfil (Tsec-Ti — Trnain-xi)? and Dist, =
Ef\;l (Tsee-ti — Trmain-yi)?, distance to dominant(main) tra-
jectory is calculated as in Equation 2.

D Di
Distance(Tsec, Tmain) = M (2)

The network was used to test the secondary trajectory con-
cept and the core parts of the network was transferred to
the next Bayesian network shown in a rectangle in Figure 5.

4.3. Catch, Throw or Miss the Ball

The third Bayesian network uses object reaction units, dom-
inant trajectories and secondary trajectories to infer the se-
mantic interactions. Figure 5 shows the Bayesian network
designed to detect the catch, throw and miss the ball events.
The first layer determines whether object catches the ball



or misses the ball depending on the evidences. If there is
not enough evidence, the network does not favor any one of
the event over the others. “Throwing the ball” event is con-
ditioned on the “catch the ball” event. Temporal sequence
of the events are kept in the object reaction unit.
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Figure 5: Bayesian network designed to detect catch, throw
and miss the ball events

The evidence detectors ObjTCLOSEBalIT and TCoin-
cidesAtEnd require some explanation. The first one mea-
sures the spatial proximity of object and ball trajectories.
The second detector uses the second half of the input seg-
ment to decide if the ball trajectory and object trajectory
make a similar motion or not.

4.4. Results

The recognition results of the algorithm are given in Ta-
ble 1. We present the results giving the number of cases
network reasoned a correct semantic name, incorrect se-
mantic name or could not reason about the semantic name
of an event. The decision is based on the difference in the
posterior probabilities. If all of the resulting posterior prob-
abilities are close to each other, the network does not favor
any of the events. In our experiment, the first network was
able to detect the correct event in most of the cases. The
second network was input secondary and dominant trajecto-
ries and was able to judge correctly in 14 of 19 experiments.
Finally, the third network mislabelled only 1 event out of 9
events.

One of the reasons for missing labels or incorrect labels
is the lack of enough data in a motion unit or a reaction
unit. The inherent noisy trajectories within a short tem-
poral segment cause false low-level evidences to be inserted
to the network. Another reason is the inexact coordinates
of secondary trajectories since the automatic extraction of
those trajectories is a noisy process. Finally, using only
trajectories in some circumstances is not enough to make a
decision about an event.

5. CONCLUSION AND FUTURE WORK

Video events were described in terms of action units or in-
teraction units or both. The low-level segments correspond-

Table 1: Results for the Networks

Network Correct False Unable
Name Reasoning | Reasoning | to decide
Walk-Run-
Stationary 23/28 4/28 1/28
HandsUPDown | 14/19 3/19 2/19
Catch-Miss-
Throw 6/9 1/9 2/9

ing to object action and interaction units were used to find
the object motion trajectories. The trajectories were ex-
pressed in terms of dominant and secondary semantically
important object motion. The extraction of secondary tra-
jectories were automatically performed. The extracted tra-
jectories were used as low-level evidences to extract event
descriptions with Bayesian networks.

We aim to extend the method using color, texture and
shape as low-level evidences in addition to motion trajecto-
ries. Furthermore, the possibility of using semantic model
to replace the manual adjustment of network parameters
will be investigated.
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