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ABSTRACT

The concept of Multiple Input Multiple Output (MIMO)
biorthogonal partners arises in many different contexts, one
of them being multiwavelet theory. They also play a cen-
tral role in the theory of MIMO channel equalization, espe-
cially with fractionally spaced equalizers. In this paper we
will explore some further theoretical properties of MIMO
biorthogonal partners. These include the conditions for the
existence of MIMO biorthogonal partners and their applica-
tion in finding the solution for the least squares signal ap-
proximation problem.!

1. INTRODUCTION

Digital filters H(z) and F'(z) are called biorthogonal part-
ners of each other with respect to an integer M if their cas-
cade H(z)F(z) obeys the Nyquist(M) property [2]. In the
multiple input multiple output (MIMO) case, biorthogonal
partners are defined using a similar approach [1]. However,
in this case the “biorthogonal partner” relation is not sym-
metric, so we distinguish between a left biorthogonal part-
ner (LBP) and a right biorthogonal partner (RBP). Before
introducing the new results, we will give a brief overview
of several different contexts in which MIMO biorthogonal
partners occur.

1.1. Motivation

Suppose we are given the signal model as shown in Fig.
1(a). The vector signal y(n) is obtained by upsampling the
vector sequence c(n) and passing the result through the ma-
trix transfer function F(z). Now, given a vector signal x(n),
suppose we want to approximate it by a signal y(n) admit-
ting the described model. The optimum vector sequence
c(n) is then determined as in Fig. 1(b). The prefilter H(z)
turns out to be a particular form of a MIMO biorthogonal
partner of F(z). In the following we refer to this as the least
squares problem. A very similar problem arises in mul-
tiwavelet theory [8]. Consider the two-band multiwavelet
transform. The space V) is spanned by N scaling functions
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Figure 1: Least squares signal modelling: (a) signal model
and (b) least squares solution (see text).

and their integer shifts. Similarly, the space W} is spanned
by N wavelets and their integer shifts. Those two spaces to-
gether form a finer resolution space V7. Suppose we have a
signal 2 (n) belonging to the space V7 and we want to find
a coarser signal zq(n) from V4 such that the distance (in the
{5 sense) from the signal ;1 (n) is minimized. This problem
can be formulated as a vector valued least squares problem,
so the solution is again given by Fig. 1.

Another place where MIMO biorthogonal partners oc-
cur is the equalization of vector channels. Figure 2 shows a
MIMO communication channel employing the fractionally
spaced equalizer at the receiver. It was shown in [1] that the
FSE needs to be a LBP of the equivalent channel transfer
matrix. Moreover, an algorithm was proposed that exploits
the flexibility in the design of LBP, so that the system in Fig.
2 becomes more robust to the channel noise.

In this paper we will explore some theoretical properties
of MIMO biorthogonal partners that were not considered in
[1]. We first provide the definition of a MIMO biorthogonal
partner. Then we give a necessary and sufficient condition
for the existence of (a stable) MIMO biorthogonal partner.
Finally we consider the least squares problem and provide
the solution within the MIMO biorthogonal partner setting.

1.2. Notations

If not stated otherwise, all notations are as in [3]. We use the
notation [z(n)];a and [X (2)];ar to denote the decimated
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Figure 2: Discrete-time equivalent communication channel
with FSE.

version z:(Mn) and its z-transform. The expanded version

{ x(n/M) forn = mul of M,
0 otherwise

is indicated by [z(n)]1 s, and its z-transform X () is de-
noted by [X (2)]1as. In a block diagram, the decimation and
expansion operations are represented by symbols | M and
T M respectively. In the case of vectors signals (e.g. Fig. 1
and Fig. 2), the decimation and expansion are performed on
each element separately. The polyphase decompozition [3]
is also valid in the matrix case. Thus for example if F(z)
is a matrix transfer function, then it can be written in the
Type-2 polyphase form as
M—1

F(z) = > ZFFi(z"). (N
k=0

If not mentioned otherwise, all the matrices in this paper are
rectangular. It is implicit that their dimensions are such that
the matrix products in question are well defined and that the
product matrices have the appropriate size.

2. REVIEW OF MIMO BIORTHOGONAL
PARTNERS

In this section by review the notion of a MIMO biorthogonal
partner and introduce its most general form (see also [1]).

Definition 1. MIMO Biorthogonal partners. A MIMO
transfer function H(z) is said to be a left biorthogonal part-
ner (LBP) of F(z) with respect to an integer M if

[H(z)F(2)]1mr = T. 2

Similarly, a MIMO transfer function H(z) is said to be a
right biorthogonal partner (RBP) of F(z) with respect to an
integer M if [F(2)H(2)],p =L

The interpretation of the first part of the above definition
is shown in Fig. 3. It can be seen that if H(z) is a LBP of
F(z), it implies that F(z) is a RBP of H(z), but it does
not imply that H(z) is also a RBP of F(z). However, as
pointed out in [1], the results that hold for LBPs can easily
be modified to hold for RBPs. That is why we will only
consider left biorthogonal partners in the following. The
other important point to make here is that if M is changed,
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Figure 3: Block diagram interpretation of a left biorthogo-
nal partner.

the two filters might not remain partners. However, we will
often omit the term “with respect to M, since it will usually
be understood from the context.

As it was shown in [1], it is possible to state the most
general form of biorthogonal partners. For example, we can
say that a MIMO transfer function H(z) is a LBP of F(z)
if and only if it can be expressed in the form

H(z) = (G(2)F(2)]110) ' G(2) ©)

for some MIMO transfer function G(z) of the same size as
H(z). Similarly, H(z) is a RBP of F(z) if and only if it can
be expressed in the form

H(z) = G(2)([F(2)G(2)l1ar1ar) " Q)

for the appropriate MIMO transfer function G(z).

3. THE MAIN RESULTS

In the following we present a necessary and sufficient con-
dition on a MIMO transfer function F(z) for the existence
of its MIMO biorthogonal partner H(z). From now on,
by “existence of a biorthogonal partner” we actually mean
“existence of a stable biorthogonal partner”. The theorem
and the corresponding corollary will be stated only for the
case of left biorthogonal partners, but as mentioned earlier,
by simple “transposition” they can be modified to hold for
RBPs as well. After that we state the vector valued least
squares problem in the general form. Theorem 2 explains
the algorithm for solving this problem and the correspond-
ing corollary deals with the uniqueness of the proposed so-
lution. The proofs of those results can be found in Sec. 4.

Theorem 1. Existence of LBP. A MIMO transfer func-
tion F(z) with the Type-2 polyphase form as in (1) has a
LBP if and only if for all w in [0, 27) the following holds:
if forall k (0 < k < M — 1) we have Fy(e/“)C(e/*) = 0,
for some common vector C(e/%), then C(e/*) = 0.

Therefore, for any fixed w there cannot exist a nonzero
common annihilating vector C(e/%) for all the M polyphase
components of F(e/“). Note that in order for F(z) to have
an inverse we need to have det[F(e/)] # 0, for all w, and
this condition is stricter than the one in Theorem 1.



Unfortunately, the statement of Theorem 1 does not pro-
vide much intuition about the existence of biorthogonal part-
ners. It turns out that if F(z) has any LBP, the choice (10)
will be a valid one. This is a straightforward consequence of
the following corollary, which is stated without proof since
it follows directly from the proof of Theorem 1.

Corollary 1. A MIMO transfer function F(z) has a
LBP if and only if S(w) = [FT(e/*)F(e/*)]; s is a pos-
itive definite matrix for all w in the range [0, 27).

Next, we consider the least squares problem as moti-
vated in the introduction. This topic has been treated exten-
sively in the setting of oblique projections [6]. In the scalar
case, a similar problem is very common in multiresolution
theory [4] as well as spline approximation theory [5], [2].
See also [7] for a slightly different problem formulation.

Consider the space F of all signals y(n) such that

Y (z) = F(2)C(z") )

where ¢(n) is an arbitrary £ vector sequence.? This situa-
tion is depicted in Fig. 1(a). Here F(z) is a given MIMO
transfer function. The problem is as follows. Given any
vector signal x(n), we want to find the corresponding pro-
jection in F, i.e. a vector signal y(n) € F such that

> ly(n) = x(m)|? (6)

is minimized. Here || - || denotes the vector norm in ¢5. The
following theorem describes the algorithm by which this is
achieved and the corresponding corollary will address the
uniqueness of the proposed solution.

Theorem 2. Solution to least squares problem. Given
a MIMO transfer function F(z) and assuming that S(e/%) =
[FT(e7“)F (7)) ar is a positive definite matrix for all w,
we define the (orthogonal) projection filter by

- -1
H(2) = ([F(2)F(2) 1) L FG). )
If we pass the vector signal x(n) through the projection fil-
ter and decimate the outputs by M we get the optimal driv-
ing sequence c(n) (see Fig. 1(b)). This ¢(n) can be used to
find the least squares approximation y(n) as in Fig. 1(a).
The positive-definiteness condition in Theorem 2 is nec-
essary only to ensure the stability of H(z). The next corol-
lary states that the least squares solution proposed by Theo-
rem 2 is unique. The proof of Corollary 2 is omitted, since
it closely follows the corresponding proof in the scalar case
[2] and is also a direct consequence of the uniqueness of the
orthogonal projection onto a closed subspace [6].
Corollary 2. Uniqueness of projection filter. Consider
Fig. 1. For fixed F(z) satisfying the condition of Theorem

2This means that all the scalar sequences corresponding to the vector
entries are square summable.

2 and x(n) € {2, the least squares approximation y(n) is
unique. Next, suppose the prefilter H(z) in Fig. 1(b) is
such that the output of F(z) (Fig. 1(a)) is the least squares
approximation of x(n) for any choice of the ¢5 input x(n).
Then H(z) is unique and is therefore given by (7).

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. We start by proving the forward part
of the theorem, i.e. supposing H(z) is a stable LBP of F(z),
we need to show that there cannot exist a nonzero common
annihilating vector C(e/*). By the supposition we have that
[H(2)F(2)];a = I, and this implies that there cannot exist
a nonzero vector C(z) such that F(2)C(z) = 0. Indeed,
if we assume there exists such nonzero vector C(z), we end
up with the following contradiction

0 = [H(2)F(2)C(+")] 11 = C(2).

Rewriting F(z) in the Type-2 polyphase form (1) we then
have that there cannot exist a nonzero vector C(z) such that

M-1
Z ZFFMC(EM) =0
k=0

or equivalently, such that
Fr(2)C(z) =0 Vk, 0<k<M-1.

Therefore, if there exists a stable LBP of F(z), then there
cannot exist a common nonzero annihilating vector C(e/*)
for all the M polyphase components Fy, (e/).

Now we proceed to prove the converse. For that, we
suppose that for no w does there exist a common nonzero
vector C(e/) annihilating F(e/*) for all k. This implies
that the following matrix S(w) is positive definite for all w

M—1

S(w) = Y FL(e™)Fi(e®). (8)

k=0

To justify this, recall that for any nonzero vector C(e/*)
and S(w) as in (8) the entity C'(e/*)S(w)C(e/*) is a sum-
mation of nonnegative terms. Moreover, as asserted previ-
ously, for any choice of C(e/*) at least one of those terms
is strictly positive, so that the overall result is positive. Ob-
serve from (8) that S(w) = [Ff(e/“)F(e/*)]| as. Therefore,
by the previous discussion we have

det ([FT(e/*)F(e’)] ar) > 0. )

The final conclusion is that if there does not exist a common
nonzero annihilating vector C(e/) for all the M polyphase
components Fy, (¢/*) then F(z) has a stable LBP. In partic-
ular, one such LBP is given by

~1

H(:) = (FFGm) B (0)

M



and is obtained from (3), with G(z) = F(z). This LBP is

stable due to (9), which concludes the proof. vVVV
Proof of Theorem 2. The error (6) that needs to be

minimized can be rewritten in the frequency domain

Z ly(n

Wl = [ IYE) - X

dw
o

- / TR0 M) X ()2 2

E(w)

Note that C(e/“M) appearing in the integrand is periodic
with period 27/M, and therefore can be chosen indepen-
dently only in the range 0 < w < 27/M. That is why the
integrand can be rewritten as

M-1
= > [P
k=0

For each w in 0 < w < 27/M we can choose C(e/“M)
such that the nonnegative integrand £(w) is minimized and
that would in turn minimize the projection error (6). Define
the vector a(w) and the matrix B(w) as

NC(eM) — X (|2

a(w)=[XT (/) XT (5. .. XT (3ot 5 T
B(w)= [FT(ejw) FT(ej(eri—’;)) . FT(ej(erW))]T
The problem now reduces to that of minimizing
E(w) = ||B(w) (ejwM) a(w)||2
= [C1(e") — a! (W)B(W)S ! ()]S(w)
[C(e/“M) — 871 (w)Bf(w)a(w)] + al (w)a(w)
—al(w)B)S ! (w)B (w)a(w) (11

where S(w) = Bf(w)B(w). The form (11) was obtained
by the “completion of squares”. Consider the right hand
side of the last equality in (11). It consists of two parts; the
first part depends on the choice of C(e/“™) and the second
part does not. Since the first part is always nonnegative, we
should choose C(e7“M) such that it becomes zero. Note
that the matrix S(w) = Bf(w)B(w) is positive definite,
which follows from the assumption [F(e/)F (e/*)] s >
0. Therefore, the only way to make the first part zero is to
choose C(e“M) = (Bf(w)B(w)) ™' Bf(w)a(w). In or-
der to rewrite this solution in terms of multirate building
blocks, we note [3] that for any transfer function A (e),

(A7) 1 m = 77 fcw;[]l A5 = ). Therefore,
Ml ; 2nk . 2rk
B (w)B(w) = Z Fi(e/@H TR (ed (T 5F0))
k=0

= MIF'(e*)F ()] arrur,

M—-1
I
k—0

= M[FT(e/)X (")) arrr-

The optimal C(e/“™) is therefore

27rk

Bf(w)a(w) = )X (eI )

C(ejwl\«l) —
(B (0B ()] iar) 1 BT )X ()]
Thus we have C(z) = [H(z)X(2)] s, where H(z) is given

by (7). This concludes the proof. vV VYV

5. CONCLUDING REMARKS

MIMO biorthogonal partners can be found in many sig-
nal processing applications including MIMO channel equal-
ization and the multiwavelet theory. The main purpose of
this paper is to consider some of the theoretical aspects of
MIMO biorthogonal partners. The important issues treated
are the existence of biorthogonal partners and their applica-
tion in the least squares signal approximation.
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