FRAME RECONSTRUCTION OF THE LAPLACIAN PYRAMID
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ABSTRACT

We study the Laplacian pyramid (LP) as aframe operator, and this
reveals that the usual reconstruction is suboptimal. With orthog-
onal filters, the LP is shown to be a tight frame, thus the optimal
linear reconstruction using the dual frame operator has a simple
structure as symmetrical with the forward transform. For more
general cases, we propose an efficient filter bank for reconstruction
in the LP that is shown to perform better than the usual method.
Numerical results indicate that gains of more than 1 dB are actu-
ally achieved.

1. INTRODUCTION

Multiscale data representation is a powerful idea. In particular,
it captures data in hierarchical structures where each level corre-
sponds to a reduced-resolution approximation. One of the early
examples of such a scheme is the Laplacian pyramid (LP), pro-
posed by Burt and Adelson [1] for image coding. The basic idea
of the LPisthe following. First, derive a coarse approximation of
the original signal by lowpass filtering and downsampling. Based
on this coarse version, predict the original (by upsampling and fil-
tering) and then calculate the difference as the prediction error.
The process can be iterated on the coarse version. A diagram for
theLPisshowninFig. 1.
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Fig. 1. Laplacian pyramid scheme.

A drawback of the LPistheimplicit oversampling. Therefore,
in compression applications it is normally replaced by subband
coding or wavelet transform which is a critically sampled scheme
and often an orthogonal decomposition. However, the LP has the
advantage over the critically sampled wavelet scheme in the sense
that each pyramid level generates only one bandpass image (even
for multidimensional cases) which does not have “scrambled” fre-
quencies. Thisfrequency scrambling happens in the wavelet filter
bank when a highpass channel after downsampling is folded back
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into the low frequency, and thus its spectrum is reflected. In the
LP, this effect is avoided by only downsampling the lowpass chan-
nel. Therefore the LP permits further subband decomposition to be
applied on its bandpass images. A possible scheme isa pyramidal
decomposition where bandpass images of the LP are fed into di-
rectional filter banks. The end resultisaset of directiona subband
images at multiple scales[2].

For many applications like compression and denoising, the co-
efficients in the transform domain are processed further and this
can introduce errors due to quantization or thresholding. The pro-
cessed coefficients are then used to reconstruct the original data.
For the LP, the usual reconstruction — adding the prediction from
the coarse version with the difference, produces perfect recon-
structed image in the absence of noise but turns out to be sub-
optimal otherwise.

Our key observation isthat the LP isaframe operator and that
one should use the dual frame operator for reconstruction. While
this seems a somewhat trivial observation, it has not been used in
practice, probably because the usual reconstruction, while subop-
timal, isso simple. Yet, we will show that gains of more than 1 dB
are actually possible.

This paper is organized as follows. Section 2 introduces the
notations and sets up the LP in the frame analysis where the dual
frame operator or the pseudo-inverse is defined. Section 3 consid-
ers an important case where the LP is in fact a tight frame, and
thus the dual frame operator has a simple structure as symmetrical
with the forward transform. In Section 4, inspired by the structure
of the new reconstruction algorithm for the tight frame case, we
study a more general LP where it has better inverse operator with
an efficient filter bank. Section 5 compares the two reconstruction
algorithms for multilevel LP's. The performance improvement of
the new reconstruction algorithm is illustrated with experimental
resultsin Section 6.

2. PRELIMINARIES

2.1. Burt and Adelson’s L aplacian Pyramid

We consider the general d-dimensional case where a discrete-time
signa is a sequence of real-valued numbers defined on the inte-
ger lattice Z¢, eg. z[n], n € Z% The sampling operation is
represented by ad x d nonsingular integer matrix M [3]. Signals
with finite energy belong to a Hilbert space I (Z?) with the inner
product is defined as

(x,y) =Y z[nlyln,
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and thusthe lo-normiis||z|| = \/(z,z) = />, cza z[n]?.

With the notation as shown in Fig. 1, the filtering and down-
sampling operation for the LP yields

yoln] = Y z[kIn[Mn — K] = (z[e], h[s — Mn]), (D)
kezd

where we denote h[n] = h[—n].
Similarly, the upsampling and filtering operation resultsin

wo[n] = ) yo[klg[n — MA]. @)
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Writing signal's as column vectors, for example x = (z[n] :
n € 24T, we can express those operations as left matrix multi-
plications

Yo, = Hz and xo = Gy,,

where H and G correspond to (| M)H and G(1 M), respec-
tively. In particular, H has {B[n— Mk]} | asits rows and
neL

G has {g[n — Mk]},, .5« asits columns. In the sequel, we denote
| as the identity matrices with appropriate sizes depending on the
context.

With this matrix notation, the output of the LPin the highpass
channelsis

Yy, =x—y, =z — GHz = (1 - GH)=x.

By combining the previous relations, we can write the analysis
operator of the LP as

(Zf):<|—HGH>” €)
—_—— ——
Y Ta

The usual inverse transform of the LP compute: & = Gy, +
y,,0r

&= (G |)(Z(l’> 4

Ts

Itiseasy to check that T; T, = | for any H and G. Thisagrees
with thewell-known fact that the L P can be perfectly reconstructed
with any pair of filters H and G.

2.2. FrameAnalysis

The frame analysis is a powerful concept in analyzing redundant
representations [4]. For a detailed introduction to frames, readers
are referred to [5] (Chapter 2). It can be shown that a linear op-
erator is aframe if and only if it is invertible on its range with a
bounded inverse. For the Laplacian pyramid, there always exists a
bounded reconstruction algorithm (i.e. the usual agorithm), hence
the LPis guaranteed to be aframe. In this case, the frame operator
is represented by the left matrix multiplication with T, .

Since the LP is aredundant transform, its frame operator ad-
mits an infinite number of left inverses. Among those, the most
important one is called the dual frame operator, which is repre-
sented by the pseudo inverse of T, [6]

T =(TiT.) ' T, (5)

When there is additive “noise” in the frame coefficients, the
pseudo inverse eliminates the influence of errors that are orthog-
onal to the range of the frame operator. Therefore, if instead of
having accessto y = T,x we havey = y + e, then the pseudo
inverse provides the solution @ = T 4 that minimizes the residual
[[Tex — g||. Thisis called the least-squares solution.

Let T, be an arbitrary left inverse of T,. With the noise
model setup as above, we can write the reconstruction error when
using T, ! as

T—x =
+e)—xz=T."e. (6)

3. ATIGHT FRAME CASE

First, let us consider the special case where filters in the LP are
orthogonal filters with respect to the sampling matrix M. More
precisely, the orthogonal condition requires that

(g[e], gl® — Mn]) = 4[n],  and )
h[n] = g[—n], or H=GT. (8)

Such filters can be designed using well-known methods, in-
cluding separable and non-separable ones [3, 7]. The LP with
orthogonal filters possess an important property as stated in the
following proposition.

Proposition 1 The Laplacian pyramid with orthogonal filters, i.e.
satisfying (7) and (8), isa tight frame.

Proof: Under the orthogonality condition, (2) becomes

zo[n] = ) (z[e], gle — MK])g[n — MK].
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Therefore if we denote V' as the space spanned by the set of
orthogona vectors {g[e — Mk]},cza then xo is the orthogonal
projection of x onto V. Together with the fact that y, =  — xo,
using the Pythagorean theorem leads to

ll2ell” = llwoll* + lly, 1" = llyoll* + Nl 1”- ©

where the equality ||zo|| = ||y,l|| comes from the fact that y,
are the coefficients in the orthonormal expansion (2) of @ in V. O

Since T,, isatight frame with TZ T, = I, its pseudo inverse
is simply the transposed matrix. Thus we have

T T
le(,_GGGT) =(G I-GGT ). (10

So the optimal (least-sgquare) reconstruction using the pseudo
inverseis

T = le =Gy, + (I = GGT)yl =G(y, —Hy,) + y;-

The last expression above is derived in order to reduce the
computational complexity of the pseudo inverse T} . It leads to an
efficient filter bank structure for reconstruction of the LP that is
shown in Fig. 2.

It is worth to stress two important facts here. First, the usua
inverse is different from the pseudo inverse, and thusiit is subopti-
mal. Secondly, the pseudo inverse in this case has a symmetrical
structure with the forward transform hence it has the same order
of complexity.



Fig. 2. The proposed reconstruction scheme for the Laplacian
pyramid in Fig. 1. It is the pseudo inverse when the filters are
orthogonal.

4. GENERAL CASES

In this section we consider the more general caseswhere H and G
are arbitrary filters. Even though any frame operator has a pseudo
inverse, for complexity reason we would like to only consider the
cases where the inverse operator has a fast structured transform.
Inspired by the tight frame case, we restrict our attention to the
reconstruction algorithm that has a structure as shown in Fig. 2.
We then turn the problem around by asking for which filters such
an algorithm isindeed an inverse or pseudo inverse. This has the
same flavor as the filter design problem for perfect reconstruction
filter banks. The following proposition provides an answer to our
question.

Proposition 2 ([8]) 1. The reconstruction shown in Figure 2
is an inverse transform of the LP if and only if two filters
H and G are biorthogonal with respect to the sampling lat-
tice M, which means the upper branch of the LP (GH) isa
projector, or HG = I.

2. Furthermore, that reconstruction is the pseudo inverse if
and only if the upper branch of the LP (GH) is an orthogo-
nal projector.

Recall that given a Hilbert space H, alinear operator P map-
ping H onto itself is called a projector if P> = P. Furthermore,
if P issdf-adjoint or P = P7 then P is called an orthogonal
projector.

Remark: It isinteresting to note that the two conditions for
theLPinthe above proposition, i.e. projection and orthogonal pro-
jection, are exactly the same with the conditions for the improved
LP'sthat was studied in [9]. Those conditions lead to LP with in-
terpolation and least squares LP, respectively. The motivation for
those modifications in [9] is to minimize the prediction error y,
of the LP, whereas our motivation in this work is to have a better
reconstruction agorithm for the LP.

So the minimum requirement for the filter bank shown in
Fig. 2 to be a bona fide inverse of the LP is the biorthogonality
condition of thefilters H and G. In this case, the LP has an inter-
esting geometrical interpretation. Let us define two subspaces V/
andV that are spanned by {g[e—ME]}; <z« and {h[e—Mk]},cza,
respectively. These are aso the column and row spaces of G and
H. For all & in I>(Z%), the result of the approximation channel of
the LP: ¢y = GHe, is a projection of  onto V. Furthermore,
since HG = | the approximation error y, = x — xo has property
that

Hy, = H(x — GHz) = Hz — Hz = 0.

In other words, the approximation error is perpendicular toV’ .
Thisfact isillustrated in Fig. 3. The upper channel in the LP (GH)
can be called an oblique projector [10] and denoted by Py .

ro = Pvm

Fig. 3. Graphical representation of aoblique projector. z, = Py x
is the projection of z onto V_such that the approximation error
x — Pyx isperpendicular to V.

Let us define W the orthogonal complementary subspace of
V, thenitiseasy to verify that y, = x — Py x isaprojection of
onto W such that the error isparallel to V' (refer to Fig. 3). Denote
this projection as Py, Piw = | — GH.

Now |et us compare the reconstruction using the usual method,
denoted REC-1:

z1 =T,y =Gy, +vy,, (11)
and the one using the filter bank in Fig. 2, denoted REC-2:
x2 =T,y =Gy, + (I — GH)y,. 12

Those two reconstruction algorithms are different in the way
of handling the prediction error y,. More specifically, the REC-
1 method adds directly y, while the REC-2 method adds the Pw
projection of y, to the reconstructed signal. So when thereisnoise
in the LP coefficients, the REC-2 method eliminates the influence
of errorsin g, that are parallel to V.

In order to have more quantitative measurements in the per-
formance of the two methods, suppose we wish to approximate x
giveny = T,x + e. With no further information about the error
inthe LP coefficients e, it makes sense to chose & to minimize the
residual || To& — ¢||. As mentioned before, the optimal linear so-
Iution to this problem isthe pseudo inverse of T, . Using thisasthe
measurement for the performance in reconstruction, the following
result states that REC-2 always performs better than REC-1.

Proposition 3 ([8]) Assume that H and G are biorthogonal fil-
ters. Let &, and & be the results of reconstruction from noisy LP
coefficients ¢ using REC-1 and REC-2, respectively. Then we have

ITa1r =gl 2 [ Tade2 — 9, (13)

where equality holds if and only if ¢, = 0.

5. MULTILEVEL LAPLACIAN PYRAMIDS

We now consider the situation where the LP scheme is iterated
on the coarse version. We concentrate, for the sake of simplicity,
on the one-dimensional case where M = 2. By separating the
sequences y; into two subsequences y1o and y1: of even and odd
numbered samples, respectively, we can re-formulate the LP as a
three channels filter banks (see Fig. 4).

Then, using polyphase-domain analysis, we can write the new
analysisfiltersas[8]

K()(Z) =
Kl(z) =

1— H(2)Go(2"),
z—H(z)Gl(z2), (19



Fig. 4. Laplacian pyramid as an oversampled filter bank.

where G (z) are the polyphase components of G(z), or
G(z) = Go(2°) + 27 ' G1(2%).

Since H(z) and G(z) are both lowpass filters, Ko(z) and
K, (z) are high passfilter.
On the synthesis side, for the REC-1 reconstruction we smply
have
Fo(z)=1, and Fi(z) ==z (15)
Wheress, for the REC-2 reconstruction, the synthesis filters
are
Fo(Z) = Ko(Z), and Fl(z) = Kl(z) (16)
When the filter bank in Fig. 4 isiterated on the lowpass chan-
nel yo, then by using the multirate identity which says that G(z)
followed by upsampling by 2 is equivalent to upsampling by 2
followed by G(2?) [7], we have equivalent synthesis filters at the
n-level of amultilevel LP as

on—1

FM(e) =G [6E"), i=01  an

preceded by upsampling by 2. Theimpulse responses of F™ (z)
are the synthesis functions for the LP.

Now, consider what happen when (15) and (16) are substi-
tuted into (17). In the REC-1 method, we see that the synthesis
functionsfor the LP are al low frequency signals. Thus, the errors
from highpass subbands of a multilevel LP do not remain in these
subbands but appear as broadband noise in the reconstructed sig-
nal. In[11], thiseffect was noted as the most serious disadvantages
of the LP for coding applications.

On the other hand, in the REC-2 method, the synthesis func-
tions have the similar frequency characteristics as the analysis
functions. Therefore, reconstruction using REC-2 method reme-
dies the previous mentioned problem of the LP.

6. EXPERIMENTAL RESULTS

In order to test the actual performance of the new reconstruction
method with “real” signals we set up the experiments as follows.
An input signa is transformed with a Laplacian pyramid. The
L P coefficients are uniformly quantized, and this introduces errors
depending to the quantization step. The quantized L P coefficients
are then used to reconstruct the original signal using the usual and
thenew inverses. Thisisthetypical scenario in lossy compression.
We use the signal-to-noise ratios (SNR) between the original and
the reconstructed signals as the measures of quality.

Experiments with different test signals and filters (using
both orthogonal and biorthogonal ones) indicate that the new

reconstruction provides significant improvements over the usual
method. Fig. 5 plots atypical result. In this case theinput signal is
the 512 x 512 “Lena” image and the LP is computed with 5 levels
using the Daubechies’ orthogonal maximally flat 8-taps filters [5].
As can be seen, gains of more than 1 dB are actually obtained at
each quantization step.

T T T T T T T
36k — With the usual inverse |
\ — — With the new inverse

2 i i i i i i i
001 0015 002 0025 003 0035 004 0045 005
Quantization step

Fig. 5. Comparison of reconstruction from quantized Laplacian
pyramid coefficients using two different inverses.
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