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ABSTRACT 2. SOME WAVELETS NOTATIONS
This work provides a new approach to estimate the param-
eters of a semi-parametric generalized linear model in theWe introduce in this section the notations associated with
wavelet domain. The method is illustrated with the prob- & discrete wavelet transform. These notations will be used
lem of detecting significant changes in fMRI signals that in the sequel of the paper. Ldt(t) be the wavelet, and
are correlated to a stimulus time course. The fMRI signal let ®(¢) be the scaling function associated with a multires-
is described as the sum of two effects : a smooth trend andolution analysis [5]. Let{h,} be the lowpass filter, and
the response to the stimulus. The trend belongs to a sublet {g,.} be the high pass filter associated with this wavelet
space spanned by large scale wavelets. We have developei#ansform. Letx = {z,,}, n = 0,---, N — 1 be a discrete
a scale space regression that permits to carry out the regressignal. For the simplicity of the presentation we assume that
sion in the wavelet domain while omitting the scales that N = 27. The wavelet coefficients of are defined by the
are contaminated by the trend. Experiments with fMRI data following recursions :
demonstrate that our approach can infer and remove drifts

that cannot be adequately represented with low degree poly- ST = Tk k=0,---,N—-1 (2)
nomials. _Our approach regglts ina noticgable improvement sxi“ _ Zgn—zk stl k=0,---,2777IN -1 (3)
by reducing the false positive rate and increasing the true -

positive rate. dxiﬂ _ Z B o539 k=0, 2N 1 (4)
1. INTRODUCTION !

The wavelet transforrW at scale/ is a linear operator that
In this paper we address the problem of estimating the pa-mapsx to Wx given by :
rameters of a semi-parametric generalized linear model of a
time series of the form : [szd, dxg, dxg‘l,dx{‘l, . 7@;6’ .. -dxg ]

y(t) = 0(t) + px(t) + O'QU(t) @ ,dmé, ...... ’dwéle_l]t_

wheree(t) is a smooth trendn;.(t) isa de_terministic signal, We also require that the wavelet havep vanishing mo-

g is a scalgr that we are trying to estimate, arta (t) is ments. As a consequence, polynomials of degree 1

a white noise process. This model allows to describe the, i hayve a very sparse representation in such a wavelet
fMRI response to a stimulus(t). The MRl signaly(t),is pasis : all thed] are equal to zero, except for the coeffi-

contaminated by a random noise and a systematic baselin@jants [ocated at the border of the dyadic subdivisibn=
drift 6(t). Baseline drifts in fMRI data have been described 0,1,2,4,---,27°1)

by linear [1, 2], and polynomial [3, 4] functions of time.

The first contribution of this work is a new model of the drift

that belongs to a subspace spanned by large scale wavelets. 3. MODEL OF THE FMRI SIGNAL

The second contribution of the work is a new method to

estimate the drif® and to test for the significance of the Functional MRI can detect and quantify hemodynamic changes
responses to the stimulus. The method performs a scale induced by brain activation and neuronal activity. Most of
space regression in the wavelet domain with the scales ofthe current methods of analysis of fMRI data rely on an
the drift being omitted. experimental paradigm consisting of ON (active) and OFF

This work was supported by a Whitaker Foundation Biomedical Engi- ("€St) periodic Stimwat.ions of the subject. A Com'monly em-
neering Research Grant. ployed method to estimate the effect of the stimulus at a




given voxelM in the brain relies on the linear model asso- 4. MAXIMUM LIKELIHOOD ESTIMATION
ciated with the two sided Studentsest, and assumes that

the fMRI signalyys at M is given by We describe here a method to estimate the veitand the
scalars from a single time serieg. The estimation is done
Yim = Pm x; + chz/i_M , i=0,---,N—1 (6) in the wavelet domain, and a Student¢est can be per-
formed on the wavelet coefficients to assess the significance
wherex = [zg,---,2y_1]" is the stimulus time course, of 3. Applying the wavelet transforfW on both sides of

composed of -1s (OFF) and 1s (ONjv is a scalar that  equation (7), yields :
measures the strength of the response to the stimulus in-

duced by neuronal activationyg will be different from Wy = W0 + fWx + Wv 9)
zero if the voxelM is inside a functionally activated brain . h | ¢ . )
area. vat =[vom, -+, vn_1.m)' IS @ white noise process BecauséWw is an orthonormal transfornWv is a Gaussian

white noise. Lethy = 2-7°T1 N be the number of coeffi-

caused by thermal and quantum noise. i i .
cients that describe the trend. Our model of the trend is

Unfortunately, the detection of significant changes (mea-
sured by a significantys) in the fMRI signal is further com- Wo — [SGJ do7. ... de’°
plicated by the presence of long term physiological drifts 00y TN
and instrumental instability that contribute to a systematic Equation (9) can be written as a standard regression prob-
increase or decrease in the signal with time [6, 7]. Itis obvi- |gm -
ous that if such baseline drifts are not removed, any analysis
based on the model (6) will be tracking the large variation Wy = A§ + Wv (12)
in the signal instead of the effects of the stimulus. In this
work we propose to replace the model (6) with the follow-

0, 70} . (10)

where then x (ng + 1) matrix A is given by :

ing model : Bl 0 szd T
J
Vit = O+ Brt @5+ v i = 0, N =1 (7) ! 0 dn
. : . AN -
whereOn = [fom, -+ ,0n—1.m]" is @ baseline drift. In 1 (‘) dao
the sequel, we drop thB1 subscript to ease readability ; A= 1 dx?,;'“N‘Q 12)
however, one should keep in mind that our method can ef- 2’]81V1—1
fectively estimate a different trend for each voxel. 0 dxy
Our understanding of the origin of the drift [7] does not ‘
provide us with a specific function, or even a parametric 0 diiy,
model of the drift. Our assumption is that the trend is a B N
superposition of physical and physiological phenomena thatand theng + 1 vector§ is
occur at different time scale, but that do not vary greatly P J
over a short interval of time. An appropriate model for the &= |s0y,dby, - ad929~70N_175:| (13)
trend is thus provided by a linear combination of large scale ) o ) o
wavelets - The maximum likelihood estimate gfis given by :
J 27IN-1 £=[A'A]TA'WYy (14)
0(t) = s0]®(2~7t) + do7p(277t — k). (8
®) S ];0 kZ:O W ) ® Let P, the projector onto the fir&t7o+! N coordinates
; i i=0.... 9 Jot1I N _
This model assumes that all the fine scale coefficiefits, (Prx)i =4 L =0y, 27 N-1 (15)
1 < j < Jy—1of 3 are zero. The finest scalg char- 0 otherwise

acterizes the complexity of the trend. Because the wavelet

hasp vanishing moments, the polynomials of deggee 1 and letQ, be the projector onto the lagf — 2= 7o+l N
will be approximated with a small error. This non para- coordinates®;, + Q;, = I). It can be shown [8] that the
metric model of the trend not only describes the low fre- Maximum likelihood estimates are given by :
quen_ci_es fluctuations in the signal (en_coded b_y the wavelet . < Q;,Wx,Q; Wy >
coefficientss{, dj, ...), but it also describes rapid localized p= Z 0, Wx. 0, Wx >
changes, as is shown in Fig. 1. It is important to note that Jo <o
a model based on a Fourier expansion of the trend wouldand
miserably fail to describe localized changes, unless almost —~ . .
all of the harmonics were included in the model. 0 =W~ P (Wy - Wx) A7)

(16)



This scale space regression permits to carry out the regres
sion in the wavelet domain while omitting the scales that are
contaminated by the trend. Becausis a Gaussian random
variable, one can test its significance with a Studetest
with N — ng — 1 degrees of freedom.

5. MODEL SELECTION FOR THE TREND

The selection of the optimal value of, is performed as
follows. We start withJ, = J which provides the descrip-
tion of the trend with the minimum number of parameters.
The significance of is then tested, and we compute the
value. We successively test more and more complex model
of the trend by decreasinfy. Because the scale of the trend °

should be larger than the scale of the stimulus, we stop be~

fore Jy reaches the scale of the stimulus. Finally, one selects
that J, which provides the smalleg?-value. As shown in

the experiments, the same value can be used for all activated
voxels. This approach guarantees that the detrending algo-

rithm will not increase the® values.

6. EXPERIMENTS

We illustrate here the principle of the algorithm with some
data provided by Gregory McCarthy, (Brain Imaging and
Analysis Center, Duke University), that demonstrate left pos-
terior temporal lobe activation during auditory comprehen-
sion [9]. The study involved several subjects who listened
passively to alternating sentences spoken in English (their
native language), and Turkish (which they did not under-
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Fig. 1. Trend for different values of the scalg. From top

stand). Each time series was composed of 28 alternatingto down.J = 4,6, 8.

auditory segments of English and Turkish. Each segment

lasted for 6 seconds, and images were acquired every 1.5 s.

There was a delay of 12 seconds from the first image to the

All time series were detrended with the sadie= 4.

The activation maps were thresholdedrat= 0.005, and

onset of the first sentence. TR=1,500, slice thickness=9mm are superimposed on the raw EPI data. The left side of the

skip = 2mm, imaging matrix= 128 64, voxel size = 3.X
3.2 x 9 mm. More details about the experiments are avail-
able in[9].

6.1. Analysis of the detrending performance

Atime series was extracted from the region of interest (ROI)
B in slice 5 (voxel (75,21)), shown in Fig. 2. Figure 1
shows this same time-series with the trend superimposed
for several values ofly. We note that a piecewise linear
trend (such as the one obtained flgr= &) fails to track the
long term variability of the signal.

A Studentt-test was designed to compare the signal un-
der the two conditions: English sentences, or Turkish sen-
tences. Pixels with #-value less than.005 were deemed
activated, and colored in red in the activation maps. Fig-
ure 2 shows the result of thetest for the slices 4 and 5
after detrending with the optimal value &§ = 4.

brain is represented on the right side of the image. The maps
were generated with two runs of alternating Turkish/English
intervals, starting with Turkish. The maps clearly show acti-
vated pixels in the left inferior frontal lobe (region A and B).
For each slice we selected an ROI that contained strongly
activated voxels P < 10~*). The activation in these re-
gions was assumed to be truly caused by the stimulus and
not by physiological or random noise. The two ROIls are
shown as yellow rectangles, and are pointed at by the arrows
A and B in slice 4 and 5 respectively. The performance of
the detrending in each ROI was quantified using the follow-
ing factors : (1) the number of activated voxels inside the
ROI, (2) the mearP-value for all the voxels inside the ROI,
and (3) the smallegP-value inside the ROI. These numbers
are reported in tables 1 and 2. For both slices the detrend-
ing resulted in a noticeable improvement by increasing the
number of activated voxels, while decreasing the mBan
value inside the ROIs. The optimal effect was obtained for



a scale equal to 4. (The scale of the stimulus, as defined6] P. Jezzard, “Physiological noise: strategies for correc-

by the inverse of its frequency, was 2). As the scale of the
trend becomes finer (e.gly = 3), the trend starts track-

ing the variations in the BOLD signal that are due to the
stimulus response, and results in a poorer performance [8
Because the ROls in this experiment can be considered as
truly activated voxels, this experiments demonstrates that

the detrending helps to decrease the false positive countg8]

and increase the true positive counts. Indeed, on can signif-
icantly decrease the level of the threshold while increasing
the number of truly activated voxel in the ROIs A and B.

7. CONCLUSION

In this paper we addressed the problem of estimating the
parameters of the semi-parametric generalized linear model
(7). This model allows to describe the fMRI response to
a stimulus contaminated by a random noise and a system-
atic baseline drift. The trend belongs to a subspace spanned
by large scale wavelets. We have developed a scale space
regression that permits to carry out the regression in the
wavelet domain while omitting the scales that are contam-
inated by the trend. Experiments with fMRI data demon-
strate that our approach can infer and remove drifts that
cannot be adequately represented with low degree polyno-
mials. Our approach results in a noticeable improvement by
reducing the false positive rate and increasing the true posi-
tive rate.
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# activated mean minimum
Jo voxels P-value P-values
4 3 1.3635e-05 | 4.5712e-06
No trend 2 1.2959e-04 | 7.1008e-05

Table 1. ROI A, size = 4 voxels, effect of the detrending

# activated mean minimum
Jo voxels P-value P-values
4 4 1.820e-04 | 3.3331e-08
No trend 2 1.200e-03 | 8.8839e-07

Table 2. ROI B, size = 6 voxels, effect of the detrending

Fig. 2. Top : slice 4. Bottom : slice 5. Activation map
thresholded ap = 0.005 superimposed on the raw EPI im-
ages. The scale of the trend was 4.
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