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ABSTRACT
This work provides a new approach to estimate the param-
eters of a semi-parametric generalized linear model in the
wavelet domain. The method is illustrated with the prob-
lem of detecting significant changes in fMRI signals that
are correlated to a stimulus time course. The fMRI signal
is described as the sum of two effects : a smooth trend and
the response to the stimulus. The trend belongs to a sub-
space spanned by large scale wavelets. We have developed
a scale space regression that permits to carry out the regres-
sion in the wavelet domain while omitting the scales that
are contaminated by the trend. Experiments with fMRI data
demonstrate that our approach can infer and remove drifts
that cannot be adequately represented with low degree poly-
nomials. Our approach results in a noticeable improvement
by reducing the false positive rate and increasing the true
positive rate.

1. INTRODUCTION

In this paper we address the problem of estimating the pa-
rameters of a semi-parametric generalized linear model of a
time series of the form :

y(t) = θ(t) + βx(t) + σ2ν(t) (1)

whereθ(t) is a smooth trend,x(t) is a deterministic signal,
β is a scalar that we are trying to estimate, andσ2ν(t) is
a white noise process. This model allows to describe the
fMRI response to a stimulusx(t). The fMRI signal,y(t), is
contaminated by a random noise and a systematic baseline
drift θ(t). Baseline drifts in fMRI data have been described
by linear [1, 2], and polynomial [3, 4] functions of time.
The first contribution of this work is a new model of the drift
that belongs to a subspace spanned by large scale wavelets.
The second contribution of the work is a new method to
estimate the driftθ and to test for the significance of the
responseβ to the stimulus. The method performs a scale
space regression in the wavelet domain with the scales of
the drift being omitted.
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2. SOME WAVELETS NOTATIONS

We introduce in this section the notations associated with
a discrete wavelet transform. These notations will be used
in the sequel of the paper. LetΨ(t) be the wavelet, and
let Φ(t) be the scaling function associated with a multires-
olution analysis [5]. Let{hn} be the lowpass filter, and
let {gn} be the high pass filter associated with this wavelet
transform. Letx = {xn}, n = 0, · · · , N − 1 be a discrete
signal. For the simplicity of the presentation we assume that
N = 2J . The wavelet coefficients ofx are defined by the
following recursions :

sx0
k = xk k = 0, · · · , N − 1 (2)

sxj+1
k =

∑
n

gn−2k sx
j
n k = 0, · · · , 2−j−1N − 1 (3)

dxj+1
k =

∑
n

hn−2k sx
j
n k = 0, · · · , 2−j−1N − 1 (4)

The wavelet transformW at scaleJ is a linear operator that
mapsx to Wx given by :

[sxJ0 , dx
J
0 , dx

J−1
0 , dxJ−1

1 , · · · , dxj0, · · · dx
j
2−jN−1,

· · · · · · · · · , dx1
0, · · · · · · , dx1

2−1N−1]t.
(5)

We also require that the waveletψ havep vanishing mo-
ments. As a consequence, polynomials of degreep − 1
will have a very sparse representation in such a wavelet
basis : all thedjk are equal to zero, except for the coeffi-
cients located at the border of the dyadic subdivision(k =
0, 1, 2, 4, · · · , 2J−1).

3. MODEL OF THE FMRI SIGNAL

Functional MRI can detect and quantify hemodynamic changes
induced by brain activation and neuronal activity. Most of
the current methods of analysis of fMRI data rely on an
experimental paradigm consisting of ON (active) and OFF
(rest) periodic stimulations of the subject. A commonly em-
ployed method to estimate the effect of the stimulus at a



given voxelM in the brain relies on the linear model asso-
ciated with the two sided Student’st-test, and assumes that
the fMRI signalyM atM is given by

yi,M = βM xi + σ2νi,M , i = 0, · · · , N − 1 (6)

wherex = [x0, · · · , xN−1]t is the stimulus time course,
composed of -1s (OFF) and 1s (ON).βM is a scalar that
measures the strength of the response to the stimulus in-
duced by neuronal activation.βM will be different from
zero if the voxelM is inside a functionally activated brain
area. νM =[ν0,M, · · · , νN−1,M]t is a white noise process
caused by thermal and quantum noise.

Unfortunately, the detection of significant changes (mea-
sured by a significantβM) in the fMRI signal is further com-
plicated by the presence of long term physiological drifts
and instrumental instability that contribute to a systematic
increase or decrease in the signal with time [6, 7]. It is obvi-
ous that if such baseline drifts are not removed, any analysis
based on the model (6) will be tracking the large variation
in the signal instead of the effects of the stimulus. In this
work we propose to replace the model (6) with the follow-
ing model :

yi,M = θi,M + βM xi + σ2νi,M , i = 0, · · · , N − 1 (7)

whereθM = [θ0,M, · · · , θN−1,M]t is a baseline drift. In
the sequel, we drop theM subscript to ease readability ;
however, one should keep in mind that our method can ef-
fectively estimate a different trend for each voxel.

Our understanding of the origin of the drift [7] does not
provide us with a specific function, or even a parametric
model of the drift. Our assumption is that the trend is a
superposition of physical and physiological phenomena that
occur at different time scale, but that do not vary greatly
over a short interval of time. An appropriate model for the
trend is thus provided by a linear combination of large scale
wavelets :

θ(t) = sθJ0 Φ(2−J t) +
J∑

j=J0

2−jN−1∑
k=0

dθjkψ(2−jt− k). (8)

This model assumes that all the fine scale coefficients,dβjk,
1 ≤ j ≤ J0 − 1 of β are zero. The finest scaleJ0 char-
acterizes the complexity of the trend. Because the wavelet
hasp vanishing moments, the polynomials of degreep − 1
will be approximated with a small error. This non para-
metric model of the trend not only describes the low fre-
quencies fluctuations in the signal (encoded by the wavelet
coefficientssJk , d

J
k , ...), but it also describes rapid localized

changes, as is shown in Fig. 1. It is important to note that
a model based on a Fourier expansion of the trend would
miserably fail to describe localized changes, unless almost
all of the harmonics were included in the model.

4. MAXIMUM LIKELIHOOD ESTIMATION

We describe here a method to estimate the vectorθ, and the
scalarβ from a single time seriesy. The estimation is done
in the wavelet domain, and a Student’st-test can be per-
formed on the wavelet coefficients to assess the significance
of β. Applying the wavelet transformW on both sides of
equation (7), yields :

Wy = Wθ + βWx + Wν (9)

BecauseW is an orthonormal transform,Wν is a Gaussian
white noise. Letn0 = 2−J0+1N be the number of coeffi-
cients that describe the trend. Our model of the trend is

Wθ =
[
sθJ0 , dθ

J
0 , · · · , dθ

J0
2−J0N−1

, 0, · · · · · · , 0
]
. (10)

Equation (9) can be written as a standard regression prob-
lem :

Wy = Aξ + Wν (11)

where then× (n0 + 1) matrixA is given by :

A =



1 0 sxJ0
1 0 dxJ0

� |
...

1 0 dxJ0
2−J0N−2

1 dxJ0
2−J0N−1

0 dxJ0−1
0

|
...

0 d1
2−1N−1


(12)

and then0 + 1 vectorξ is

ξ =
[
sθJ0 , dθ

J
0 , · · · , dθ

J0
2−J0N−1

, β
]

(13)

The maximum likelihood estimate ofξ is given by :

ξ̂ = [AtA]−1AtWy (14)

LetPJ0 the projector onto the first2−J0+1N coordinates

(PJ0x)i =

{
xi if i = 0, · · · , 2−J0+1N − 1
0 otherwise

(15)

and letQJ0 be the projector onto the lastN − 2−J0+1N
coordinates (PJ0 + QJ0 = I). It can be shown [8] that the
maximum likelihood estimates are given by :

β̂ =
< QJ0Wx,QJ0Wy >

< QJ0Wx,QJ0Wx >
(16)

and

θ̂ = W−1PJ0(Wy − β̂Wx) (17)



This scale space regression permits to carry out the regres-
sion in the wavelet domain while omitting the scales that are
contaminated by the trend. Becauseβ̂ is a Gaussian random
variable, one can test its significance with a Studentt-test
with N − n0 − 1 degrees of freedom.

5. MODEL SELECTION FOR THE TREND

The selection of the optimal value ofJ0 is performed as
follows. We start withJ0 = J which provides the descrip-
tion of the trend with the minimum number of parameters.
The significance of̂β is then tested, and we compute theP -
value. We successively test more and more complex models
of the trend by decreasingJ0. Because the scale of the trend
should be larger than the scale of the stimulus, we stop be-
foreJ0 reaches the scale of the stimulus. Finally, one selects
thatJ0 which provides the smallestP -value. As shown in
the experiments, the same value can be used for all activated
voxels. This approach guarantees that the detrending algo-
rithm will not increase theP values.

6. EXPERIMENTS

We illustrate here the principle of the algorithm with some
data provided by Gregory McCarthy, (Brain Imaging and
Analysis Center, Duke University), that demonstrate left pos-
terior temporal lobe activation during auditory comprehen-
sion [9]. The study involved several subjects who listened
passively to alternating sentences spoken in English (their
native language), and Turkish (which they did not under-
stand). Each time series was composed of 28 alternating
auditory segments of English and Turkish. Each segment
lasted for 6 seconds, and images were acquired every 1.5 s.
There was a delay of 12 seconds from the first image to the
onset of the first sentence. TR=1,500, slice thickness=9mm,
skip = 2mm, imaging matrix= 128× 64, voxel size = 3.2×
3.2× 9 mm. More details about the experiments are avail-
able in [9].

6.1. Analysis of the detrending performance

A time series was extracted from the region of interest (ROI)
B in slice 5 (voxel (75,21)), shown in Fig. 2. Figure 1
shows this same time-series with the trend superimposed,
for several values ofJ0. We note that a piecewise linear
trend (such as the one obtained forJ0 = 8) fails to track the
long term variability of the signal.

A Studentt-test was designed to compare the signal un-
der the two conditions: English sentences, or Turkish sen-
tences. Pixels with aP -value less than0.005 were deemed
activated, and colored in red in the activation maps. Fig-
ure 2 shows the result of thet-test for the slices 4 and 5
after detrending with the optimal value ofJ0 = 4.
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Fig. 1. Trend for different values of the scaleJ0. From top
to downJ = 4, 6, 8.

All time series were detrended with the sameJ0 = 4.
The activation maps were thresholded atP = 0.005, and
are superimposed on the raw EPI data. The left side of the
brain is represented on the right side of the image. The maps
were generated with two runs of alternating Turkish/English
intervals, starting with Turkish. The maps clearly show acti-
vated pixels in the left inferior frontal lobe (region A and B).
For each slice we selected an ROI that contained strongly
activated voxels (P < 10−4 ). The activation in these re-
gions was assumed to be truly caused by the stimulus and
not by physiological or random noise. The two ROIs are
shown as yellow rectangles, and are pointed at by the arrows
A and B in slice 4 and 5 respectively. The performance of
the detrending in each ROI was quantified using the follow-
ing factors : (1) the number of activated voxels inside the
ROI, (2) the meanP -value for all the voxels inside the ROI,
and (3) the smallestP -value inside the ROI. These numbers
are reported in tables 1 and 2. For both slices the detrend-
ing resulted in a noticeable improvement by increasing the
number of activated voxels, while decreasing the meanP -
value inside the ROIs. The optimal effect was obtained for



a scale equal to 4. (The scale of the stimulus, as defined
by the inverse of its frequency, was 2). As the scale of the
trend becomes finer (e.g.J0 = 3), the trend starts track-
ing the variations in the BOLD signal that are due to the
stimulus response, and results in a poorer performance [8].
Because the ROIs in this experiment can be considered as
truly activated voxels, this experiments demonstrates that
the detrending helps to decrease the false positive counts
and increase the true positive counts. Indeed, on can signif-
icantly decrease the level of the threshold while increasing
the number of truly activated voxel in the ROIs A and B.

7. CONCLUSION

In this paper we addressed the problem of estimating the
parameters of the semi-parametric generalized linear model
(7). This model allows to describe the fMRI response to
a stimulus contaminated by a random noise and a system-
atic baseline drift. The trend belongs to a subspace spanned
by large scale wavelets. We have developed a scale space
regression that permits to carry out the regression in the
wavelet domain while omitting the scales that are contam-
inated by the trend. Experiments with fMRI data demon-
strate that our approach can infer and remove drifts that
cannot be adequately represented with low degree polyno-
mials. Our approach results in a noticeable improvement by
reducing the false positive rate and increasing the true posi-
tive rate.
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# activated mean minimum
J0 voxels P-value P-values
4 3 1.3635e-05 4.5712e-06

No trend 2 1.2959e-04 7.1008e-05

Table 1. ROIA, size = 4 voxels, effect of the detrending

# activated mean minimum
J0 voxels P-value P-values
4 4 1.820e-04 3.3331e-08

No trend 2 1.200e-03 8.8839e-07

Table 2. ROIB, size = 6 voxels, effect of the detrending

Fig. 2. Top : slice 4. Bottom : slice 5. Activation map
thresholded atp = 0.005 superimposed on the raw EPI im-
ages. The scale of the trend was 4.


