HIERARCHICAL ADAPTIVE REGULARISATION METHOD FOR DEPTH
EXTRACTION FROM PLANAR RECORDING OF 3D-INTEGRAL IMAGES

Silvia Manolache*, Malcolm McCormick

De Montfort University
Department of Engineering and Technology
The Gateway, Leicester LE1 9BH, UK

ABSTRACT

The paper presents a novel algorithm for object space recon-
struction from the planar (2D) recorded data set of a 3D-
integral image. The integral imaging system is described
and the associated point spread function is given. The space
data extraction is formulated as an inverse problem, which
proves ill-conditioned, and tackled by using a hierarchical
multiresolution strategy and imposing additional conditions
to the sought solution. The hierarchisation strategy and
the two-phase adaptive constrained 3D-reconstruction al-
gorithm based on the use of two sigmoid functions are pre-
sented. Finally, illustrative simulation results are given.

1. INTRODUCTION

The development of 3D-imaging systems has been a con-
stant pursuit of the scientific as well as of the entertainment
community in the new technological era. Integral photog-
raphy was pioneered by Lippmann ([1], 1908), who used
microlens arrays to create, record on photographic film,
and replay integral three dimensional images. Since 1908,
when it was first reported, the integral photographic tech-
nique has been improved as a result of theoretical studies,
technical innovations of the optical systems, and progress
in microlens manufacturing. Integral imaging resembles to
holography, but it uses natural light and reproduces true
colour optical models. Hence, it offers a viable alternative
to other autostereoscopic systems ([2]).

The optics of an advanced form of integral imaging sys-
tem — employing a two tier optical network — in which a
true 3D optical reconstruction of a scene is transferred to
the capture device, has been described in detail by Davies
and McCormick ([3], [4]).

Extracting depth information from 3D-integral images
has various applications, which range from remote inspec-
tion in robotic vision and medical imaging to combining
real and computer generated 3D-pictures in a virtual stu-
dio. The aim of the present paper is to describe a method
of reconstructing the composition of a 3D-object space from
2D-recorded data encoding the scene. The algorithm is
applicable both to integral imaging and holography. The
current work has dwelt upon the application to integral
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imaging. More specifically, the depth estimation from 3D-
integral pictures is formulated as an inverse problem: given
the image, i.e. the recorded ’effect’ of the object space, find
the ’cause’ which had produced it, i.e. recover the intensity
contours and, consequently, the composition and the depth
of the object scene. The direct problem - image formation
and recording - has been studied in a previous paper, and
the equation of the point spread function for the lenticu-
lar integral imaging system has been derived ([5]). Inverse
problems in imaging are ill-posed and their discrete cor-
respondents are ill-conditioned due to the inherent loss of
information associated with the direct process ([6]). In or-
der to cure the ill-posedness of the problem, approximate
solutions satisfying additional constraints coming from the
physics of the problem are searched. The present work
comprises an adaptive regularisation scheme for obtaining
a constrained least squares solution of the depth extraction
problem, which is hierarchically applied in order to obtain
high resolution object space reconstruction.

2. 3D-INTEGRAL IMAGING SYSTEM AND
ASSOCIATED POINT SPREAD FUNCTION

The optical arrangement of the 3D-integral imaging sys-
tem, shown in Figure 1, comprises two macrolens arrays
(MA1 and MA2) placed equidistantly behind and in front
of an autocollimating transmission screen (ATS). The ATS
is made up of two microlens arrays separated by their joint
focal distance. The recording plane, a photographic plate
whose position coincides with the focal plane of a microlens
array (RA), lies within the optical model.

The paper considers a camera configuration where the
ATS contains square based hemispherical lenslets and the
recording array is made up of identical semicylindrical mi-
crolenses. This system is known as a 8D-lenticular integral
imaging system ([3], [5]) and produces 3D-images contain-
ing horizontal parallax.

The object is imaged by the input macrolenses which
transmit compressed transposed images that occur at or
near the central double microlens screen (ATS). The screen
inverts the optical sense of each intermediary image (see
Figure 2), and, simultaneously, presents these spatially re-
versed 3D-optical models to the corresponding output macro-
lenses. The output macrolenses retranspose the optical
models to the correct spatial location. The final integrated
image, formed by superposed optical models projected by
the second macrolens array, is a true 3D optical 1:1 recon-



struction of the object. It is recorded as a 2D-sampled data
set possessing either horizontal parallax (if semicylindrical
microlenses are used in the recording array), or continu-
ous parallax (in the case of the spherical or square based
microlens arrangement).

The integral image recorded in the focal plane of a
recording microlens array as a planar sampled data set con-
tains all the 3D information related to the object space.
Each microlens of the recording array samples a fractional
part of the scene, many microlenses recording directional in-
formation of the scene from different viewing angles. There-
fore, parallax information about any particular point is
spread over the recording plane. Redisplay of the full spa-
tial model as a real 3D image can be effected by overlaying
the sampled data set by an integral decoding element.

The spread function of the entire optical process com-
bines the spread effect of both the central double microlens
screen and the recording array ([5]):
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where (X, Y") are the coordinates in the image space, (z,y, z)
represent the object space, and the summation is done with
respect to the index of the microlenses which 'see’ the point
(z,y,z). In the above equation, K;(, , . is the point spread
function component behind one microlens of the recording
screen:
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depend explicitly on lenslet parameters and point depth z
(I5)).

Equation (2) indicates that the spread function is space
variant and that it holds depth information in all the fac-
tors. This fact will be used in recovering three dimensional
data about the object space. Due to the small values of the
parameters involved in the point spread function formulae,
only the significant factors should be considered in a compu-
tational approach of the depth extraction problem. When
using lenticular arrays (i.e. semicylindrical microlenses),
the spread on the x-dimension decreases rapidly to 0, so the
z-factors in the point spread expression can be dropped.

3. FORMULATION OF THE OBJECT SPACE
RECONSTRUCTION AS AN INVERSE
PROBLEM

The image formation equation for the integral imaging sys-
tem is:
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where I(xz,y, z) is the intensity at point (z,y, z).

It is noticed that the integral image formation process
is not a convolution process because the critical shift invari-
ance property does not hold. Therefore classical deconvolu-
tion methods cannot be used to tackle the problem of scene
reconstruction from an integral image.

However, the point spread function provides a linear im-
age formation operator A such that equation (4) be written

as: g=AIL. (5)

The reconstruction of the intensity distribution in the ob-
ject is the inverse process of the image formation given by
equation (5). The discrete variant of the problem has been
treated considering various samplings of the object space.
Numerical experiments have shown that the matrix associ-
ated with the point spread function is very ill-conditioned.
Alternative methods of reconstructing the object space are
thus necessary and one of them is presented in the next
section.

4. HIERARCHICAL ADAPTIVE
CONSTRAINED 3D-RECONSTRUCTION
ALGORITHM

The ill-conditioning of the problem is determined by the
existence of very small singular values of the operator A,
which virtually increase the dimension of the null-space of
A in numerical applications and make the solutions of the
equation (5) be very unstable. The number of small singular
values can be decreased by reducing the size of the matrix
corresponding to A, so by considering only a low number of
sampling points in the object space (lower than the number
of pixels in the image). This operation has the drawback of
inducing low resolution in the object reconstruction.

4.1. Hierarchical multiresolution strategy

The conflict between ill-conditioning of the imaging opera-
tor and high resolution reconstruction requirement has been
solved by adopting a hierarchical multiresolution strategy
based on zooming in the high interest regions. This ap-
proach consists of the following steps:

1. Coarse sampling: Sample a large domain D) using a
coarse grid and obtain a low resolution reconstruction I 1)
from the equation g = AD(l)fD(l).

2. Fine sampling: Select the high interest regions Dj,..,
D, of the object space from the low resolution reconstruc-
tion 1,1y and consider the rest of the space as determined.
Sub-sample the union D® = DlAU ... U D,, and obtain
a finer resolution reconstruction I, 2) from the equation
9=Ap>Ipe).

If necessary, the procedure can be recursively reapplied
until the object space is reconstructed at the desired reso-
lution.

The algorithm for obtaining a reliable solution for each
sampled domain is given in the next subsection.

4.2. Adaptive constrained 3D-reconstruction algo-
rithm

Choosing a low number of sampling points does not solve
entirely the ill-conditioning problem, as the linear system
(5) is still large, so unstable. Therefore, additional con-
straints coming from a priori knowledge about the object
space have to be imposed upon the sought solution I. More



precisely, the solution I has to be such that AT is as close
as possible to the image g, i.e.:
[|ATI — g|| = minimum. (6)

Also, a condition of positivity and bounding is necessary,

as there are neither negative nor infinite intensity objects:
Ie[0,T]. (7)

I satisfying (7) can be written as the thresholded value
of arbitrary data w: I = f(u), where f is a thresholding
function. The projection of the interval [0,7] onto R is
not differentiable, thus a sigmoid approximation of it, f, :
R"™ — [0,T]™, has been preferred:
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where n is the number of components of the vector f, i.e.
the number of sampling points chosen in the object space.
o is an arbitrary number which controls the slope of the
thresholding curve and k is a translation term ([7]).
To sum up, the sought vector I has the form I = £, (u)
and minimises the discrepancy functional € = ||A T — g]||.
The gradient of € with respect to o is:

Voe = (Afs(u) — 9)" A diag(f (ui))ir..n.  (9)

The variation of u which leads to a constrained least-squares
solution is on the decrease direction of the gradient Ve:
Au=—-nVse,n>0. (10)

The algorithm starts with an arbitrary value for u, e.g.
u = 0, and iteratively modifies v with a quantity Au com-
puted as in the above equation.

Choosing o = T'/k, the function f, becomes a quasi-
linear thresholding function. Its use in simulations has
proved inefficient. Instead, a two-phase scheme has been
preferred:

1. Use a relatively small value of o, e.g. o = T/(12k),
and perform a number of iterations.

2. Use a larger o, e.g. 0 = T/(6k), until convergence.

The first phase of the algorithm performs a polarisa-
tion of the reconstructed intensity values, whilst the second
phase removes arbitrary equalisations of the reconstructed
values. The final regularised solution f,(u) is thresholded
and only the highest values are kept. This is the result-
ing object space reconstruction output by the current algo-
rithm.

5. SIMULATION RESULTS

The hierarchical adaptive constrained 3D-reconstruction al-
gorithm has been tested on a set of computer generated
images. These images contain either a single face with var-
ious inclination angles with respect to the Ozy-plane, or
two faces having equal or different inclination angles, or a
cube. For the simplicity of the presentation, planar sections
parallel to the Oyz-plane of the object space reconstruction
are shown. The objects considered are all perpendicular to
the Oyz-plane, so their intersections with x = zo planes
are similar. Hence, recovering one section means recover-
ing the whole object. Figures 3-5 contain both the object
reconstruction and the original object for comparison. The
darker gray shades represent higher levels of intensity in
these representations.

Figure 3 depicts the object reconstruction from an im-
age containing a single transparent thin face, 0.4 mm wide,
8 mm long, centred at the point (y=0.975 m, 2=0.459 m),
perpendicular to y-axis using the adaptive constrained re-
construction algorithm. The position and dimension of the
object are correctly recovered even at low resolution.

The processing of the image of the visible sides of an
opaque cube yielded the scene depicted in Figure 4(a). The
object recovered at the coarse sampling stage is symmetric
and correctly positioned in space, and the two sides are
clearly separated. The region where the cube was detected,
marked by the dashed line in Figure 4(a), has been further
sampled and processed. The result is shown in Figure 4(b)
and provides a more accurately contoured object.

The hierarchical reconstruction of a two object scene is
presented in Figure 5. The two objects are two transparent
faces of unequal lengths perpendicular to each other. They
are correctly positioned and separated in the reconstruc-
tion, though their shapes are slightly perturbed. A fur-
ther sampling and processing is performed for the marked
regions around the two objects and more accurate recon-
structions are obtained (Figures 5(b)-(c)).

The adaptive constrained reconstruction algorithm has
converged in 40 iterations for the single object picture and
in about 150-200 iterations for the two face object and the
cube at each hierarchical stage.

6. CONCLUSIONS

The present paper has approached the object reconstruc-
tion and depth extraction from 3D-integral images as an
inverse problem, which proves to be ill-conditioned. In or-
der to cure the ill-conditioning of the problem, a hierarchi-
cal adaptive constrained 3D-reconstruction algorithm has
been considered. It is based on the use of two sigmoid
functions to determine a bounded constrained least squares
solution which provides information about the number of
objects in the scene, their shape and absolute and relative
position. The scheme can be hierarchically reapplied to
the relevant regions of the object space in order to produce
higher resolution reconstructions. The simulation results
have shown that the number of objects, absolute and rela-
tive positions and shape are recovered accurately. The hi-
erarchical scheme produces high resolution reconstructions
and is computationally efficient, as only the relevant regions
of the scene are oversampled.
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Fig. 1. 3D-lenticular integral imaging camera system
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Fig. 2. Optical stages in the integral imaging
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Fig. 3. Transversal section through the reconstruction of a
thin face orthogonal to the recording screen. The original
object is drawn in continuous line.
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Fig. 4. Transversal sections through the hierarchical re-
constructions of a cube. The original object is drawn in
continuous line.
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Fig. 5. Transversal sections through the hierarchical re-
constructions of a pair of thin faces, one orthogonal and
another parallel to the recording screen. The original ob-
jects are drawn in continuous line.



