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ABSTRACT

The problem of blind channel identi�cation for multi-
rate, multi-user communication systems is addressed.
By exploiting symbol rate di�erences, it is shown that
users can be separated based on the autocorrelation of
the received signal, thus reducing the problem to the
familiar single rate setting. A subspace method is then
developed to identify the channel associated with each
user. Simulations are used to explore algorithm per-
formance as a function of key factors such as signal to
noise ratio (SNR) and signal to interference ratio (SIR).

1. INTRODUCTION

Blind channel identi�cation continues to be of active
research interest because it facilitates equalization and
improves bandwidth eÆciency. Either explicitly or im-
plicitly, the early blind methods exploited higher order
statistics (HOS), see [2]. The primary disadvantage
of HOS-based approaches was the need for large num-
ber of samples for accurate estimation of the relevant
higher-order statistics. The seminal work of [4] showed
that for wide-sense cyclostationary signals, blind chan-
nel identi�cation was possible based only on second-
order statistics (SOS). This inspired many subsequent
SOS-based methods for blind identi�cation, described
in the recent review [3].

The extensive literature to date on SOS-based blind
identi�cation however exclusively concentrates on sin-
gle rate systems. Next (3rd) generation personal com-
munication systems must accommodate heterogeneous
traÆc, such as voice, video and data that are inher-
ently multirate. Accordingly, receiver design issues for
multirate systems is expected to be of increasing im-
portance as evidenced by a growing body of work [6].
However, channel estimation approaches and their per-
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formance evaluation for multi-user, multirate systems
remains relatively open.

In this paper, we develop a subspace method for
blind estimation of channels for multirate communica-
tion systems. The approach utilizes the signal cyclosta-
tionarity features and is based on the autocorrelation
function of the sampled received signal. By exploiting
the di�erences in user periodicity in the autocorrela-
tion function resulting from respective symbol (baud)
rates, we extract the component due to each user. A
subspace method is then devised to estimate the un-
known channel parameters for individual users.

2. PROBLEM STATEMENT

A generic multirate communication system operating
over �nite duration multipath channels is shown in
Fig. 1. The mathematical description is given by [1]

hi(t) =

LpX
j=1

�jci(t� �j) =

0
@ LpX
j=1

�j Æ(t� �j)

1
A � ci(t)

(1)
where ci(t) is the transmit pulse shape for the i-th

user, and �i(t) =
PLp

j=1 �jÆ(t � �j) represents a Lp-
path physical channel with respective delays �j for the
j-th path and � denotes convolution. The baseband
received signal is given by

y(t) =

KX
i=1

1X
k=�1

si(k)hi(t� kTi) + w(t) (2)

where si(k)'s are mutually independent zero-mean i.i.d.
input sequences with variance �2i , K is the number of
distinct symbol rates and w(t) is additive white Gaus-
sian noise with variance �2w . Note that we assume for
simplicity that there is only one user at each rate in
the system, therefore the term i-th user will refer to
rate i user in the following. Without loss of generality,
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Figure 1: A multirate communication system

suppose the ratio between these rates is

T1
p1

=
T2
p2

= � � � =
TK
pK

= T (3)

where p1; p2; � � � ; pK are co-prime integers. We denote
1
T
as the basic rate. The received signal is oversampled

with respect to the basic rate by a factor � = T
L

to
yield

y(n�) =

KX
i=1

1X
k=�1

si(k)hi(n�� kTi) + w(n�) (4)

resulting in the following discrete time model

y(n) =

KX
i=1

1X
k=�1

si(k)hi(n� kLpi) + w(n); (5)

The problem addressed in this paper is the blind esti-
mation of hi(n) based on y(n).

3. OUTLINE OF APPROACH

The algorithm proposed in this section exploits the cy-
clostationarity of the oversampled received signal. Let
yi(k) =

P1
k=�1 si(k)hi(n � kLpi) be the component

of y(n) due to the i-th user; its autocorrelation is given
by

ryi [n;m] = Efyi(n)y
�
i (n�m)g

= �2i

1X
k=�1

hi(n� kLpi)h
�
i (n�m� kLpi) (6)

And the autocorrelation of the noise-free received signal
is

ry [n;m] = Efy(n)y�(n�m)g =

KX
i=1

ryi [n;m] (7)

The following are easily veri�able:
Result 1: ryi [n;m] is a periodic function in n with
fundamental period Pi = Lpi.
Result 2 ry[n;m] is periodic in n with fundamental
period P = Lp1p2 � � � pK and
Result 3: ~ryi [n;m] = ry[n;m] � ryi [n;m] is periodic
in n with fundamental period Qi = LP=Pi.

Thus, for any n1 = j1Qi + d, n2 = j2Qi + d, where
j1; j2; d are integers with 0 � d � Qi � 1 we have

rn1;n2y (m) = ry [n1;m]� ry[n2;m]

= (ryi [n1;m] + ~ryi [n1;m])� (ryi [n2;m] + ~ryi [n2;m])

= (ryi [n1;m]� ryi [n2;m]) + (~ryi [n1;m]� ~ryi [n2;m])

= ryi [n1;m]� ryi [n2;m]

= rn1;n2yi
(m) (8)

where the fourth equation follows from Result 3.
Lemma: For n1; n2 satisfying n1modQi = n2modQi,

rn1 ;n2y (m) = rn1;n2yi
[n;m] establishes the key user sepa-

ration result.

3.1. The Algorithm

Denote f li (m) =
P1

k=�1 hi(m)Æ(m+kPi� l), gi(m) =
h�i (�m) and assume �2i = 1 for simplicity. Thus (6)
can be rewritten as

ryi [n;m] = fni (m)� gi(m) (9)

and

rn1;n2yi
(m) = (fn1i (m)� fn2i (m))� gi(m) (10)

It follows from its periodicity that rn1;n2yi
(m) is not

identically zero if n1modPi 6= n2modPi and at the
same time fn1i (m) 6= fn2i (m) for some m. Hence (8)
indicates that if n1 and n2 further satisfy n1modQi

= n2modQi, then rn1;n2y (m) are nonzero statistics only
about the i-th user. Denoting q1 = n1modPi, q2 =
n2modPi, we search over (n1; n2) such that n1modQi =
n2modQi for all (q1; q2) pairs satisfying q1 < q2. We
index all these (q1; q2) pairs as 1; 2; � � � ; Ji. Note that
it suÆces to only consider 0 � n1; n2 � P � 1 because
of the periodicity of rn1;n2y (m) and q1 < q2 because
(q1; q2) and (q2; q1) are essentially the same. Accord-
ingly in the following we replace rn1;n2y (m); rn1;n2yi

(m)

with r
(l)
y (m); r

(l)
yi (m)(1 � l � Ji) respectively. Intro-

ducing f
(l)
i (m) = fn1i (m) � fn2i (m), we obtain the

following compact version of (10) involving the obser-
vation statistics and the unknown channel parameters
hi(n)

r(l)y (m) = r(l)yi (m) = f
(l)
i (m)� gi(m) (11)



Denote ry(m) = [ r
(1)
y (m) � � � r

(Ji)
y (m) ]T , fi(m) =

[ f
(1)
i (m) � � � f

(Ji)
i (m) ]T , suppose hi(n), fi(m) have

support [0 Ni] and de�ne:

FTi =

2
64
fi(0) � � � fi(Ni)
. . . � � � � � �

. . .

fi(0) � � � fi(Ni)

3
75
MiJi�(Mi+Ni)

G
T
i =

2
64
gi(�Ni) � � � gi(0)

. . .
� � � � � �

. . .

gi(�Ni) � � � gi(0)

3
75
(Mi+Ni)�(Mi+2Ni)

R
T
i =

2
4

ry(�Ni) � � � ry(Ni)

. . .
� � � � � �

. . .

ry(�Ni) � � � ry(Ni)

3
5
MiJi�(Mi+2Ni)

Now (10) yields a matrix form equation:

Ri = GiFi (12)

Result: If Fi has full row rank, Ri and Gi share the
same column space, which can be determined by an
appropriate subspace revealing decomposition. Apply-
ing the Singular Value Decomposition (SVD) to the
(Mi + 2Ni)�MiJi block Toeplitz matrix Ri yields

Ri = GiFi =
�
Us Uo

�� �s 0

0 0

��
VH
s

VH
o

�

(13)
where Us spans the (Mi +Ni)-dimensional signal sub-
space de�ned by the columns of Gi, and Uo spans its
orthogonal complement, i.e.

Gi ? Uo ) GH
i Uo = 0 (14)

Exploiting the Toeplitz structure of Gi, (14) can be
translated into

UTo hi = 0 (15)

where

hi =
�
hi(Ni) � � � hi(0)

�T
=

�
gi(�N) � � � gi(0)

�H

Uo =

2
6664

Uo(1; :) � � � Uo(Mi +Ni; :)
Uo(2; :) � � � Uo(Mi +Ni + 1; :)

...
. . .

...
Uo(Ni + 1; :) � � � Uo(Mi + 2Ni; :)

3
7775

with Uo(m; :) being the m-th row vector of Uo. From
di�erent viewpoint, in [7] Qiu et. al. used this method

to compute the greatest common divisor (GCD) of sev-
eral polynomials. Denoting Q = U�oU

T
o , the channel

vector can be identi�ed up to a scalar in the presense
of noise through optimization

ĥi = arg min
khik=1

khHi Qhik
2 (16)

3.2. Identi�ability

As elaborated in the previous subsection, channel iden-
ti�ability with our subspace method requires that Fi
have full row rank. A necessary condition for this
is that it has fewer rows than columns, i.e. Mi +
Ni < MiJi. Whenever Ji � 2, this necessary condi-
tion can always be satis�ed by choosing an appropriate
Mi. Then the identi�ability theorem in [5] applies to
the new multirate scenario because FTi has the same
structure as that of the �ltering matrix (also called gen-
eralized Sylvester matrix) in [5].

Theorem 1 The channel hi(n) can be uniquely deter-
mined from (15) up to a complex scalar i�

1) for 0 � n1; n2 � P � 1, the total number of
(q1; q2) pairs Ji � 2 where q1 = n1modPi, q2 = n2modPi
such that q1 < q2 and n1modQi = n2modQi;

2) the polynomials F
(l)
i =

PNi

n=0 f
(l)
i (n)z�n; l =

1; � � � Ji, do not share any common zeros.

4. SIMULATION RESULTS

We considered a dual-rate system with p1 = 2, p2 = 3
and L = 2, implying P1 = 4, P2 = 6 and P = 12. Fol-
lowing the user seperation condition, we choose (0,2),
(1,3) as (q1; q2) pairs for the 1st user and (0,2),(0,4),(1,3),

(1,5),(2,4),(3,5) as (q1; q2) pairs for the 2nd user. r
(l)
y (m)

are then evaluated according to (8) from the corre-
sponding (n1; n2) pairs. The sample autocorrelation
is computated through

ry[n;m] =
1

Nh �Nl + 1

NhX
j=Nl

y[n+ jP +m]y�[n+ jP ]

(17)
where Nl = max(0; d�n=Pe; d�(n+m)=Pe), Nh =
min(b(No � n)=Pc; b(No � n�m)=Pc) with dxe (bxc)
standing for the smallest (greatest) integer that is greater
than or equal to (less than or equal to) x and No rep-
resenting the length of observation sequence.

The performance of the proposed algorithm is as-
sessed by normalized root mean-square error (NRMSE),
de�ned as

NRMSE =
1

khk

vuut 1

Nt

NtX
q=1

kĥq � hk2 (18)



where ĥq is the channel estimate at the qth trial, h is
real channel and Nt is the total number of Monte-Carlo
trials, which is 100 in our simulations.

We tested the two-ray multipath channel

hi(t) = �1pi(t� 
1Ti) + �2pi(t� 
2Ti) i = 1; 2 (19)

where �1; �2 are zero-mean complex Gaussian random
variables with unit variance in each component (real
and imaginary). The path delays parameters 
1; 
2 are
random variables uniformly distributed on [�1 1]. pi(t)
is the raised-cosine pulse shaping function with roll-o�
factor 0.5 and time limited to 4Ti. The same set of �l; 
l
(l = 1; 2) parameters were used for both channels.

With data samples received over the duration of
500p2T1 = 500p1T2 (i:e: 1500 symbols at rate 1, 1000
symbols at rate 2), we obtained the NRMSE curves
shown in Fig. 2 and 3. Fig. 2 indicates robustness of
the proposed algorithm against multirate interference,
i.e., the e�ectiveness of our user seperation scheme. It
is also seen that the �rst user outperforms the second
one from this perspective. In the presense of noise,
the method still works successful. However the relative
performance of the two users changes in spite of the fact
that at high SNR the �rst user still has lower NRMSE.
Eextensive simulations show that the channel order is
an important factor that results in this behavior. In
our case, the second user has a longer channel duration
than the �rst one.
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Figure 2: NRMSE versus SIR: noise free
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