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ABSTRACT

The problem of blind channel identification for multi-
rate, multi-user communication systems is addressed.
By exploiting symbol rate differences, it is shown that
users can be separated based on the autocorrelation of
the received signal, thus reducing the problem to the
familiar single rate setting. A subspace method is then
developed to identify the channel associated with each
user. Simulations are used to explore algorithm per-
formance as a function of key factors such as signal to
noise ratio (SNR) and signal to interference ratio (SIR).

1. INTRODUCTION

Blind channel identification continues to be of active
research interest because it facilitates equalization and
improves bandwidth efficiency. Either explicitly or im-
plicitly, the early blind methods exploited higher order
statistics (HOS), see [2]. The primary disadvantage
of HOS-based approaches was the need for large num-
ber of samples for accurate estimation of the relevant
higher-order statistics. The seminal work of [4] showed
that for wide-sense cyclostationary signals, blind chan-
nel identification was possible based only on second-
order statistics (SOS). This inspired many subsequent
SOS-based methods for blind identification, described
in the recent review [3].

The extensive literature to date on SOS-based blind
identification however exclusively concentrates on sin-
gle rate systems. Next (3rd) generation personal com-
munication systems must accommodate heterogeneous
traffic, such as voice, video and data that are inher-
ently multirate. Accordingly, receiver design issues for
multirate systems is expected to be of increasing im-
portance as evidenced by a growing body of work [6].
However, channel estimation approaches and their per-

This work was supported in part by in part by AFOSR Grant
F49620-1-0472

formance evaluation for multi-user, multirate systems
remains relatively open.

In this paper, we develop a subspace method for
blind estimation of channels for multirate communica-
tion systems. The approach utilizes the signal cyclosta-
tionarity features and is based on the autocorrelation
function of the sampled received signal. By exploiting
the differences in user periodicity in the autocorrela-
tion function resulting from respective symbol (baud)
rates, we extract the component due to each user. A
subspace method is then devised to estimate the un-
known channel parameters for individual users.

2. PROBLEM STATEMENT

A generic multirate communication system operating
over finite duration multipath channels is shown in
Fig. 1. The mathematical description is given by [1]
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where ¢;(t) is the transmit pulse shape for the i-th

user, and o;(t) = Zfﬁl a;0(t — 7;) represents a Ly-

path physical channel with respective delays 1; for the
j-th path and ® denotes convolution. The baseband
received signal is given by
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where s;(k)’s are mutually independent zero-mean i.i.d.
input sequences with variance o7, K is the number of
distinct symbol rates and w(t) is additive white Gaus-
sian noise with variance 2. Note that we assume for
simplicity that there is only one user at each rate in
the system, therefore the term i-th user will refer to
rate ¢ user in the following. Without loss of generality,
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Figure 1: A multirate communication system

suppose the ratio between these rates is
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where p;,po,- -, pg are co-prime integers. We denote

% as the basic rate. The received signal is oversampled

with respect to the basic rate by a factor A = % to
yield

K 0
y(nA) =D > si(k)hi(nA — kT;) + w(nd)  (4)
resulting in the following discrete time model
K e8]
y(n) = Z Z si(k)hi(n — kLp;) + w(n),  (5)
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The problem addressed in this paper is the blind esti-
mation of h;(n) based on y(n).

3. OUTLINE OF APPROACH

The algorithm proposed in this section exploits the cy-
clostationarity of the oversampled received signal. Let
yi(k) = > po_ si(k)hi(n — kLp;) be the component
of y(n) due to the i-th user; its autocorrelation is given
by

ry:[n,m] = E{yi(n)y; (n —m)}

=07 > hi(n—kLp;)hi(n —m —kLp;) (6)
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And the autocorrelation of the noise-free received signal
is

K
ry[n,m] = E{y(n)y*(n —m)} = Zf’y [n,m]  (7)

The following are easily verifiable:
Result 1: ry[n,m| is a periodic function in n with
fundamental period P; = Lp;.
Result 2 ry[n,m] is periodic in n with fundamental
period P = Lpyps - px and
Result 3: 7,;[n,m] = ry[n,m] — ry,[n,m] is periodic
in n with fundamental period Q; = LP/P;.

Thus, for any n1 = j1Q; +d, na = j2Q; + d, where
Jj1,J2,d are integers with 0 < d < Q; — 1 we have

7“2“’”2 (m) = ry[ni, m] — ry[n2, m|

= (ry;[n1, m] + 7y, [n1,m]) — (ry, [n2, m] + 7y, [n2,m]))
= (ry;[n1,m] = ry;[n2,m]) + (Fy, [n1, m] — 7y, [n2,m])
= 1y, [n1, m] — ry, 02, m]

= rjm2 (m) ®)

where the fourth equation follows from Result 3.

Lemma: For ny,n, satisfying nymodQ; = nomodQ;,
ry"2(m) = ry1"2[n, m] establishes the key user sepa-
ration result.

3.1. The Algorithm

Denote fl(m) =342 hi(m)d(m+kP;—1), g;(m) =
hf(—m) and assume o7 = 1 for simplicity. Thus (6)
can be rewritten as

ry:[n,m] = fi'(m) © gi(m) 9)

and

ryd " (m) = (f (m) = fi*(m)) © gi(m) — (10)

It follows from its periodicity that ry?"2(m) is not
identically zero if nymodP; # nomodP; and at the
same time f;"'(m) # f*(m) for some m. Hence (8)
indicates that if my and no further satisfy nymodQ;
= namod@;, then 77""2(m) are nonzero statistics only
about the i-th user. Denoting ¢ = nimodP;, ¢ =
nomodP;, we search over (n, ng) such that nymodQ; =
nomod@; for all (q1,q2) pairs satisfying ¢1 < g». We
index all these (q1,q2) pairs as 1,2,---,.J;. Note that
it suffices to only consider 0 < ny,n0 <P — 1 because
of the periodicity of ry*"2(m) and q1 < g2 because
(q1,q2) and (g2, q1) are essentially the same. Accord-
ingly in the following we replace ry"2(m),r;1"2(m)
with rg(f) (m),r@(fi) (m)(1 <1 < J;) respectively. Intro-
ducing f(m) = f™(m) — f(m), we obtain the
following compact version of (10) involving the obser-

vation statistics and the unknown channel parameters

rO(m) =rD(m) = £ (m) © g;(m) ~ (11)



Denotexy(m) = [ () (m) - r{™(m) ", £i(m) =
[ fi(l)(m) fi(Ji)(m) 17, suppose h;(n), £;(m) have
support [0 V;] and define:

£;(0) £i(N:)
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gi(—N;) gi(0)
Gl = .
9i(=Ni) 9:(0) (M;+N;)x (M; +2N;)
ry(_Ni) ry(Nl)
R/ =
ry(_Ni) ry(Nz)

M;J; X (M;+2N;)
Now (10) yields a matrix form equation:

R; = G;F; (12)
Result: If F; has full row rank, R; and G; share the
same column space, which can be determined by an
appropriate subspace revealing decomposition. Apply-
ing the Singular Value Decomposition (SVD) to the
(M; + 2N;) x M;J; block Toeplitz matrix R; yields

v
) (Vi)
(13)
where U, spans the (M; + N;)-dimensional signal sub-
space defined by the columns of G;, and U, spans its

orthogonal complement, i.e.

A; O
0 O

R.=GF,— (U, U, )(

G 1LU,=GHU,=0 (14)

Exploiting the Toeplitz structure of G;, (14) can be
translated into

UTh; =0 (15)
where
hi = [ h(V) hi(0) 1"
= [ gi(—=N) gi(0) ]H
Uo(l,:) UO(Mi-l-Ni,:)
UO(Z,:) U, Mi-f-Ni-f-].,:)
Uo = : :
U, (N; +1,°) U, (M; + 2N;, )

with U,(m,:) being the m-th row vector of U,. From
different viewpoint, in [7] Qiu et. al. used this method

to compute the greatest common divisor (GCD) of sev-
eral polynomials. Denoting Q = U UT, the channel
vector can be identified up to a scalar in the presense
of noise through optimization

h; = arg min ||hQhy|?

LHIES! (16

3.2. Identifiability

As elaborated in the previous subsection, channel iden-
tifiability with our subspace method requires that F;
have full row rank. A necessary condition for this
is that it has fewer rows than columns, ie. M; +
N; < M;J;. Whenever J; > 2, this necessary condi-
tion can always be satisfied by choosing an appropriate
M;. Then the identifiability theorem in [5] applies to
the new multirate scenario because F! has the same
structure as that of the filtering matrix (also called gen-
eralized Sylvester matrix) in [5].

Theorem 1 The channel h;(n) can be uniquely deter-
mined from (15) up to a complex scalar iff

1) for 0 < ny,ne < P — 1, the total number of
(q1,q2) pairs J; > 2 where ¢ = nymodP;, ga = namodP;
such that ¢ < ga and nymodQ@; = nomodQ;;

2) the polynomials Fgl) = ZHNLO i(l) (n)z7", 1 =
1,---J;, do not share any common zeros.

4. SIMULATION RESULTS

We considered a dual-rate system with p; = 2, po = 3

and L = 2, implying P; =4, P, = 6 and P = 12. Fol-

lowing the user seperation condition, we choose (0,2),

(1,3) as (q1, ¢2) pairs for the 1st user and (0,2),(0,4),(1,3),
(1,5),(2,4),(3,5) as (¢1, g2) pairs for the 2nd user. TZ(,l) (m)
are then evaluated according to (8) from the corre-

sponding (ni,n2) pairs. The sample autocorrelation

is computated through

Ny,

ry[n,m] = m Z yln+ P + mly*[n + jP]
Jj=N

(17)

where N; = max(0, [-n/P],[—(n +m)/P]), Np =

min(| (N, — n)/P], | (No — n—m)/P]) with [] (|])
standing for the smallest (greatest) integer that is greater
than or equal to (less than or equal to)  and N, rep-
resenting the length of observation sequence.

The performance of the proposed algorithm is as-
sessed by normalized root mean-square error (NRMSE),
defined as

1

NRMSE = ——
[l

1 &
EZIIhq—hIP (18)
g=1



where flq is the channel estimate at the ¢th trial, h is
real channel and V; is the total number of Monte-Carlo
trials, which is 100 in our simulations.

We tested the two-ray multipath channel

hi(t) = Mipi(t — Ts) + Xopi(t — 2 T3) i=1,2 (19)

where Aj, A2 are zero-mean complex Gaussian random
variables with unit variance in each component (real
and imaginary). The path delays parameters 7, v, are
random variables uniformly distributed on [—1 1]. p;(t)
is the raised-cosine pulse shaping function with roll-off
factor 0.5 and time limited to 47;. The same set of \;,
(I =1,2) parameters were used for both channels.

With data samples received over the duration of
500p2T1 = 500pT> (i.e. 1500 symbols at rate 1, 1000
symbols at rate 2), we obtained the NRMSE curves
shown in Fig. 2 and 3. Fig. 2 indicates robustness of
the proposed algorithm against multirate interference,
i.e., the effectiveness of our user seperation scheme. It
is also seen that the first user outperforms the second
one from this perspective. In the presense of noise,
the method still works successful. However the relative
performance of the two users changes in spite of the fact
that at high SNR the first user still has lower NRMSE.
Eextensive simulations show that the channel order is
an important factor that results in this behavior. In
our case, the second user has a longer channel duration
than the first one.
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Figure 2: NRMSE versus SIR: noise free
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Figure 3: NRMSE versus SNR: SIR=5dB
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