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ABSTRACT The rest of the paper is organized as follows. We will begin

In this paper we describe how prosody prediction can be ef- in S_ection 2 with a review of previous work in the area of unit se-
ficiently integrated with the unit selection process in a concate- lection for synthesis. Our approach will be described in Section 3,
native speech synthesizer under a weighted finite-state transducefollowed by experiments in Section 4. In Section 5, we summa-
(WFST) architecture. WFSTSs representing prosody prediction andfiz€e the key advances an_d discuss extensions needed for achieving
unit selection can be composed during synthesis, thus effectivelyreal-time performance with an unrestricted vocabulary.
expanding the space of possible prosodic targets. We implemented
asymbolic prosody prediction module and a unit selection database 2. BACKGROUND
as the synthesis components of a travel planning system. Results ) o )
of perceptual experiments show that by combining the steps of Recently, a growing amount of attention in speech synthesis re-
prosody prediction and unit selection we are able to achieve im- S€arch has been drawn toward unit selection methods, based on
proved naturalness of synthetic speech compared to the sequentid/Sing dynamic programming to search for speech segments in a
implementation. database that minimize some cost function [7, 6, 1]. The cost func-
tion is designed to quantify distortion introduced when selected
units are modified and concatenated. Typically there are two com-

1. INTRODUCTION ponents to the unit selection cost function: theget cost which
The growing popularity of speech-enabled computer interfaces de-is an estimate of distortion that the database unit will be subject
mands high quality speech output, particularly for telephone appli- to when modified to match the target, and tdomcatenation cost
cations. The perceived quality of standard general purpose text-to-which is an estimate of the distortion associated with concatenat-
speech (TTS) systems is not good enough, which forces applica-ing units that were not originally spoken in sequence. Target and
tion developers to use pre-recorded prompts, drastically reducingconcatenation costs have mostly focused on segmental distortion,
the text generation flexibility. and have included linguistically motivated distances based on pho-

Recent improvements in limited-domain synthesis have been netic categories [16] and/or spectral distances [1, 4]. In this work,
in the context of unit-selection concatenative synthesis, with a fo- for simplicity, the unit concatenation cost function uses a weighted
cus on methods for combining whole phrases and words with sub-distance based on mel-frequency cepstral coefficients (MFCCs), a
word units for infrequent or new words [16, 3]. Little or no at- variation of which has been found to have a reasonable (0.66) cor-
tention has been paid to natural prosody generation, with the as-relation with perceptual distances [15]. In addition, however, we
sumption that it is accounted for in the phrase-size units. How- also introduce separate target costs associated with the match be-
ever, as complexity of the domain increases, there is more room fortween target and database unit prosody in terms of symbolic labels.
prosodic variability that must be accounted for to achieve natural Many areas of language and speech processing have adopted
speech. In this paper, we optimize the synthesizer's performancethe weighted finite-state transducer (WFST) formalism [9, 12], be-
by unifying the prosody prediction and unit selection under a com- cause it supports a complete representation of regular relations and
mon framework of weighted finite-state transducers (WFSTSs). provides efficient mechanisms for performing various operations

In the approach that we propose, the prosody prediction mod- on them. Relations are represented by the states and arcs specified
ule and the unit database are both represented as WFSTs. Durin the WFST bpology, where the arcs carry input and output la-
ing synthesis these WFSTs are composed, resulting in a singlebels and may have weights (costs) assigned to them. Given these
transducer that converts a word and phoneme sequence directlyeights, the application of the WFST entails finding the best path
into a sequence of database units. As opposed to predicting tar{i.e. path with the least cost) through the network. Transducers
get prosody first and then searching for units to match that target,can be cascaded by means of composition, or their functionalities
our approach effectively makes a “soft” decision about the target can be combined by the union operation.
prosody and evaluates alternative prosodic realizations of a given  The unit selection database can be efficiently represented in
utterance, taking advantage of the fact that it is possible to conveythe form of a weighted finite-state transducer (WFST), as it was
essentially the same meaning with prosodically different but yet suggested in [7] and implemented in [17]. The authors in [17] use
perceptually acceptable realizations of the same utterance, as eviphones as the fundamental synthesis unit. In order to constrain the
denced by the variability observed in different readings of the same number of links in the WFST, they irdduce a series of domain-
text [10]. This will introduce some variety into the synthesized independent intermediate layers of states, where all possible unit
speech, which we conjecture will actually improve naturalness.  transitions are mapped into more general classes, and transition



costs between each pair of classes are computed. The systertevels. The template prosody WFST can include more than one

also incorporates word-to-phoneme conversion WEST mod- prosodic pattern for a particular template, in which case the differ-
ule. This module is then composed with the unit selechST, ent patterns are associated with relative-frequency-based weights.
allowing conversion of input words directly into a sequence of (We have found that it is useful to have multiple versions of a tem-
database units. plate, since our synthesis database does include different prosodic

Even though the unit database implementation in [17] incor- renditions of frequent phrases, presumably for variety since it is
porates both concatenation and substitution costs as part of thenot correlated with location in the dialog.)
WEFST, these costs are based entirelyptionetic categories. In Prosody prediction is accomplished by building decision (or
most work on unrestricted TTS, acoustic parameters such as FQregression) trees, which can be efficiently compiled into weighted
and duration are predicted and used in computing the target costfinite-state transducers. A simple decision tree can be represented
Alternatively, a recent study [14] has shown that the perceived TTS by a WFST with just two states (a start and an end state) and the
quality can be improved by including symbolic prosodic labels in  number of arcs equal to the number of leaves in the tree times the
the criterion used for unit selection. Use of phonological trees number of different values that the output variable can take (as
(again, symbolic) in the target specification has also been proposedilustrated in Figure 1). The costgp(z|leaf)) in the resulting
in [13]. WEFST $ould reflect the conditional probability distributions that
can be computed at each leaf when training the tree. As also sug-
3. APPROACH gested in [12], we use€(p) = —log(p) as the cost function in our
experiments.
This section gives details about our approach to prosody predic-
tion and unit selection under a common frameworkVeFSTSs.
The process of building prosody prediction and unit selection WF- Utterance—level prosody model
STs will be described in Sections 3.1 and 3.2 respectively. Then o |
Section 3.3 will explain how these two steps can be tightly coupled | | Template prosody_®7 Prosody prediction WFST

by composing the correspondigFSTs. WEFST un s
nion

3.1. Prosody Prediction |

As we are building a constrained domain synthesizer, we can ex- Composition

pect much of the input to resemble the utterances recorded when
collecting data. Therefore, we want our model to precisely de-
scribe prosodic structures represented frequently in the training
data in terms of so called prosodic “templates”. The “templates”
are not stored speech waveforms, but rather a symbolic sequencg | Template prosody_@i
of words and word “slots” that are associated with prosodic labels WFST

Phrase-level prosody model

Prosody predictioWFST
’Accent‘ o] ’Tone%

such as pitch accents and phrase boundary markers. Thus, the ter- Union
plates may or may not correspond to actual phrases in the database,
depending on the particular words chosen. O
In addition to the “template” prosody model, wewantamodel — - - - — — — — — — — - — & - - - - - - - - - -4
that can generalize to previously unobserved input patterns. Hencé Other levels (if necessary) [

we need a prosody prediction module, that can be used as a back-

off mechanism. The main difference between our approach and Fig. 2. Modular structure of our prosody model, wheréndicates

the *back-off prosody prediction” suggested by Taylor [13] is that o ands indicates composition operations on WFSTS.
we propose a more dynamic solution by integrating prosody pre-

diction and domain-specific templates using WFSTSs. .
The overall modular structure of our finite-state prosody model

-4c(0.8 is summarized in Figure 2. Models are generated at two levels: ut-
as/c(0.8) terance and phrase. At each level two WFSTs acelypeed: one

describes specific prosodic structures in the training data, and the

b other predicts prosody for unseen cases. The prosody prediction
‘.‘ WFST may itself be generated by composing individual transduc-

ers, as in the case of accent and tone prediction at the phrase level.

The template and prosody prediction WFSTs can be combined into
p(X=9)=0.8  p(X=9)=0.3 a sing_le transducer by means _of the union operation. Finally, the
p(X=1)=0.2 p(X=1)=0.7 b:Uc(0.7) resulting models at each level (i.e. utterance level and phrase level)
are composed to form the overall prosody model. The order of
terms in the composition corresponds to the order of steps during
Fig. 1. A simple decision tree and its WFST representation, where prosody prediction, i.e. utterance level prosody is generated first
F'is a prediction variable anfk, t} are the possible class labels.  and then used as a predictor for the phrase level prosody.
Since our approach assumes that there is allowed variability
Both the template prosody and prosody prediction modules in a given utterance, no prosodic target will be given zero prosody
can be represented in the form of weighted finite-state transducersgost. However, prosodic templates are likely to contain words or
and both include component modules at the utterance and phras@hrases that were recorded continuously and therefore incur zero




concatenation costs. High template prosody costs may overruleTable 1. Perceptual experiment results: each entry shows how
the zero concatenation cost of longer units whenWeSTs are  frequently a given version was rated higher than another (ties not
composed; hence, the prosody costs should be scaled lower. Iincluded).
addition, the costs in the template prosody transducer should also
be scaled so that they are (on average) lower than the cost of the
decision tree-based prosody prediction, since the templates (when
applicable) can presumably model prosody with greater accuracy
than the decision tree.

The modular structure allows other levels of prosodic struc-
tures (such as word or paragraph levels) to be easily added if de-
sired. In addition, it is straightforward to incorporate transduc-
ers associated with gradient phenomena such as pitch range and
prominence, though we have not implemented that in this work.  We implemented the joint prosody prediction and unit selection as
the synthesis component of a travel planning system developed at
the University of Colorado [8]. The corpus contains approximately
2 hours of speech and was automatically segmented. A trained lin-
r%uist annotated a subset of the corpus (220 utterances) with ToBI
prosodic labels [11]. To alleviate the data sparsity and to lessen
the effects of labeling inconsistency we have converted the ToBlI
labels into a simplified representation, where pitch accents were
compressed into three categories: high (H*, L+H*), downstepped
('H*, L+!H*, H+!H*), and low (L*, L*+H). The boundary tones
were allowed to maintain all four possible types (L-L%, L-H%,
H-L%, H-H%), but only major prosodic boundaries (break index
4) were annotated.

Loosing Winning version

version | A B C
A *k 1 34% | 89%
B 45% | *** | 98%
C 5% | 2% | ***

4. EXPERIMENTS

3.2. Unit Selection

The units in the synthesis database can be treated as states in t
finite state transducer with the state transition cost given by the
concatenation cost. In the system implemented for this work, the
concatenation cost between urlifsandU; is the average Maha-
lanobis distance between overlapping frantes(d: +d-), where

d is the distance between the last frame of MFCCs in Upiand

the frame in unitU; ;1 which precedes un/; (as the database
was naturally recorded), and, similarljy is computed between

the first frame in uni/; and the first frame in unit’; 1 which W tructed dic t lat d ibed in Secti
follows unit U;. This approach is more robust than computing a e constructed prosodic templates (as described in Section

distance between two consecutive frames, because it does not im-3£1) for Sﬁveral type(sj offtarget sentencfetf] common to tfzie_lfegtl glget?elr-
ply continuity at join points. However, it still can be improved \allvori'eatc dcom?rlse to asequletnce N f ec?mpresse i oblla _(tes.
by including FO, energy and amplitude in the distance metric [6], € limited our focus o;everat y{oesTﬁ senhgn:(:es colq ?mln%u Y
which we plan to implement for our future experiments. Names In various prosodic contexts. fhrougnh informal interactions
The units in the database can be of arbitrary size. It is, how- with the dialog system we found that these types of utterances of-
. o ) ' ten had incorrect prosody and could potentially benefit from better
ever, important to match the unit inventory to the output of the

prosody prediction module in order to satisfy necessary conditions prosody prediction. . Fc_)r this feasibility study, we used words as
for composing the prosody prediction and the unit selection WF- the fundamental units |n.the dgtabase, henge we needed t© com-
STs, i.e. the set of output strings from the prosody prediction pute very few concatenation points, and pruning of candidate units
' . . . was unnecessary.

WFST must be acceptable aput to the unit selection transducer. . .

In the case of limited domain synthesis, many of the responses that Fourt.een target sentences were synthe_saed by_ three different
a text generator produces are likely to contain words and phrasesr.nEthOdS' A) no prosody predlcthn, with u.nlt selection based en-
that were recorded during data collection. These words and phrase§Irely on the cepstral concatenation costs; B) only one zero-cost
can be indexed directly and treated as units in the database, an(ﬁ)rOSOd'C target in the template (the most frequent), with all other

their sub-word elements can also be used as units. New words Caﬁlternatlves having very h'gh and equal .COStS; and C). a prosoo!y
template that allows alternative paths weighted according to their

be synthesized by concatenating subword or even subphone unit relative frequency (unobserved events are assigned a fixed and sig-
nificantly higher cost). The target sentences were chosen so that
3.3. WFST Composition they do not m_at_ch any single continuously recorded utterance in
the database in its entirety.
At run time the prosody prediction and the unit selection WFSTs We conducted a perceptual experiment, where five subjects,
can be composed, resulting in a single WFST capable of trans-all native speakers of American English, ranked versions A, B and
ducing target phonological input into a sequence of database unitsC based on their naturalness. The order of sentences and of the
The composition operation is better than a sequential applicationthree different utterances for each was randomized. The subjects
of the two transducers because it allows for a wider search space byvere speech researchers but were naive with respect to the system
not making a hard decision when predicting prosody. The relative implementation and corpus. The rankings submitted by one sub-
scaling of costs across these two WFSTs can be tuned accordingect were excluded from the final results because they exhibited a
to a given task. Costs for likely prosodic sequences were scaled sanuch larger variance than that of other subjects.
that on average they were close to the average concatenation cost.  The results of our perceptual experiments (as illustrated in Ta-
Perceptual experiments may be necessary to determine the optimable 1) show that version C was rated the most natural very con-
scaling. sistently. Versions A and B did not show consistent preference
The modularWFST architecture makes it easy to add new differences, though A was rated above B somewhat more often,
components to the synthesizer. For example, one can design grobably because it tended to have smoother (and fewer) concate-
letter-to-soundVFST that models different pnunciations, which nations. Two (from the total of fourteen) sentences happened to
would expand the space of candidate units even further. be the most favorable to version A, probably for this reason. Ex-



cluding these sentences brings the winning rate of C over A up to [6]
98%, suggesting that some attention to signal processing aspects of
concatenation would lead to an increased importance of prosodic
match. 7]

5. DISCUSSION

In summary, we have demonstrated that by combining the steps [8]
of prosody prediction and unit selection we can achieve improved
naturalness in speech output. The WFST architecture provides a
very flexible and efficient framework for implementing joint pre- 9]
diction and selection in a TTS system. The flexibility of WFSTs
accommodates the use of variable size units and different forms of
prosody generation. The computational efficiency of WFST com- (10
position and finding the best path allows real-time synthesis, par-
ticularly for constrained domain applications.

While the experiments here are quite limited in scope, we have [11]
conducted preliminary tests with the Radio News corpus which in-
dicate that the approach can be applied to unrestricted TTS. Unre-
stricted TTS demands the use of subword units in the unit selection
WEFST. Smaller units result in a larger network, which requires [12]
more computational power to be constructed. One approach to
reduce the computational complexity is to prune the unit database[13]
[5]. Alternatively, since computing concatenation costs is the slow-
est operation, one can precompute and cache concatenation costs
between the most frequently used pairs of units [2], or vector quan- [14
tize the space of units and store a complete distance table between
groups of units [1]. The latter approach can be smoothly inte-
grated into the WFST architecture bgrmecting states represent-
ing units to an intermediate layer of vector-quantized states with
pre-computed transitions between them. Our plans for future work [15]
include building a complete TTS system in the travel domain ca-
pable of synthesizing out-of-domain sentences.
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