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ABSTRACT
In this paper we describe how prosody prediction can be ef-

ficiently integrated with the unit selection process in a concate-
native speech synthesizer under a weighted finite-state transducer
(WFST) architecture. WFSTs representing prosody prediction and
unit selection can be composed during synthesis, thus effectively
expanding the space of possible prosodic targets. We implemented
a symbolic prosody prediction module and a unit selection database
as the synthesis components of a travel planning system. Results
of perceptual experiments show that by combining the steps of
prosody prediction and unit selection we are able to achieve im-
proved naturalness of synthetic speech compared to the sequential
implementation.

1. INTRODUCTION

The growing popularity of speech-enabled computer interfaces de-
mands high quality speech output, particularly for telephone appli-
cations. The perceived quality of standard general purpose text-to-
speech (TTS) systems is not good enough, which forces applica-
tion developers to use pre-recorded prompts, drastically reducing
the text generation flexibility.

Recent improvements in limited-domain synthesis have been
in the context of unit-selection concatenative synthesis, with a fo-
cus on methods for combining whole phrases and words with sub-
word units for infrequent or new words [16, 3]. Little or no at-
tention has been paid to natural prosody generation, with the as-
sumption that it is accounted for in the phrase-size units. How-
ever, as complexity of the domain increases, there is more room for
prosodic variability that must be accounted for to achieve natural
speech. In this paper, we optimize the synthesizer’s performance
by unifying the prosody prediction and unit selection under a com-
mon framework of weighted finite-state transducers (WFSTs).

In the approach that we propose, the prosody prediction mod-
ule and the unit database are both represented as WFSTs. Dur-
ing synthesis these WFSTs are composed, resulting in a single
transducer that converts a word and phoneme sequence directly
into a sequence of database units. As opposed to predicting tar-
get prosody first and then searching for units to match that target,
our approach effectively makes a “soft” decision about the target
prosody and evaluates alternative prosodic realizations of a given
utterance, taking advantage of the fact that it is possible to convey
essentially the same meaning with prosodically different but yet
perceptually acceptable realizations of the same utterance, as evi-
denced by the variability observed in different readings of the same
text [10]. This will introduce some variety into the synthesized
speech, which we conjecture will actually improve naturalness.

The rest of the paper is organized as follows. We will begin
in Section 2 with a review of previous work in the area of unit se-
lection for synthesis. Our approach will be described in Section 3,
followed by experiments in Section 4. In Section 5, we summa-
rize the key advances and discuss extensions needed for achieving
real-time performance with an unrestricted vocabulary.

2. BACKGROUND

Recently, a growing amount of attention in speech synthesis re-
search has been drawn toward unit selection methods, based on
using dynamic programming to search for speech segments in a
database that minimize some cost function [7, 6, 1]. The cost func-
tion is designed to quantify distortion introduced when selected
units are modified and concatenated. Typically there are two com-
ponents to the unit selection cost function: thetarget cost, which
is an estimate of distortion that the database unit will be subject
to when modified to match the target, and theconcatenation cost,
which is an estimate of the distortion associated with concatenat-
ing units that were not originally spoken in sequence. Target and
concatenation costs have mostly focused on segmental distortion,
and have included linguistically motivated distances based on pho-
netic categories [16] and/or spectral distances [1, 4]. In this work,
for simplicity, the unit concatenation cost function uses a weighted
distance based on mel-frequency cepstral coefficients (MFCCs), a
variation of which has been found to have a reasonable (0.66) cor-
relation with perceptual distances [15]. In addition, however, we
also introduce separate target costs associated with the match be-
tween target and database unit prosody in terms of symbolic labels.

Many areas of language and speech processing have adopted
the weighted finite-state transducer (WFST) formalism [9, 12], be-
cause it supports a complete representation of regular relations and
provides efficient mechanisms for performing various operations
on them. Relations are represented by the states and arcs specified
in the WFST topology, where the arcs carry input and output la-
bels and may have weights (costs) assigned to them. Given these
weights, the application of the WFST entails finding the best path
(i.e. path with the least cost) through the network. Transducers
can be cascaded by means of composition, or their functionalities
can be combined by the union operation.

The unit selection database can be efficiently represented in
the form of a weighted finite-state transducer (WFST), as it was
suggested in [7] and implemented in [17]. The authors in [17] use
phones as the fundamental synthesis unit. In order to constrain the
number of links in the WFST, they introduce a series of domain-
independent intermediate layers of states, where all possible unit
transitions are mapped into more general classes, and transition



costs between each pair of classes are computed. The system
also incorporates word-to-phoneme conversion in aWFST mod-
ule. This module is then composed with the unit selectionWFST,
allowing conversion of input words directly into a sequence of
database units.

Even though the unit database implementation in [17] incor-
porates both concatenation and substitution costs as part of the
WFST, these costs are based entirely onphonetic categories. In
most work on unrestricted TTS, acoustic parameters such as F0
and duration are predicted and used in computing the target cost.
Alternatively, a recent study [14] has shown that the perceived TTS
quality can be improved by including symbolic prosodic labels in
the criterion used for unit selection. Use of phonological trees
(again, symbolic) in the target specification has also been proposed
in [13].

3. APPROACH

This section gives details about our approach to prosody predic-
tion and unit selection under a common framework ofWFSTs.
The process of building prosody prediction and unit selection WF-
STs will be described in Sections 3.1 and 3.2 respectively. Then
Section 3.3 will explain how these two steps can be tightly coupled
by composing the correspondingWFSTs.

3.1. Prosody Prediction

As we are building a constrained domain synthesizer, we can ex-
pect much of the input to resemble the utterances recorded when
collecting data. Therefore, we want our model to precisely de-
scribe prosodic structures represented frequently in the training
data in terms of so called prosodic “templates”. The “templates”
are not stored speech waveforms, but rather a symbolic sequence
of words and word “slots” that are associated with prosodic labels
such as pitch accents and phrase boundary markers. Thus, the tem-
plates may or may not correspond to actual phrases in the database,
depending on the particular words chosen.

In addition to the “template” prosody model, we want a model
that can generalize to previously unobserved input patterns. Hence
we need a prosody prediction module, that can be used as a back-
off mechanism. The main difference between our approach and
the “back-off prosody prediction” suggested by Taylor [13] is that
we propose a more dynamic solution by integrating prosody pre-
diction and domain-specific templates using WFSTs.
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Fig. 1. A simple decision tree and its WFST representation, where
F is a prediction variable andfs; tg are the possible class labels.

Both the template prosody and prosody prediction modules
can be represented in the form of weighted finite-state transducers,
and both include component modules at the utterance and phrase

levels. The template prosody WFST can include more than one
prosodic pattern for a particular template, in which case the differ-
ent patterns are associated with relative-frequency-based weights.
(We have found that it is useful to have multiple versions of a tem-
plate, since our synthesis database does include different prosodic
renditions of frequent phrases, presumably for variety since it is
not correlated with location in the dialog.)

Prosody prediction is accomplished by building decision (or
regression) trees, which can be efficiently compiled into weighted
finite-state transducers. A simple decision tree can be represented
by a WFST with just two states (a start and an end state) and the
number of arcs equal to the number of leaves in the tree times the
number of different values that the output variable can take (as
illustrated in Figure 1). The costsc(p(xjleaf)) in the resulting
WFST should reflect the conditional probability distributions that
can be computed at each leaf when training the tree. As also sug-
gested in [12], we usedc(p) = �log(p) as the cost function in our
experiments.
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Fig. 2. Modular structure of our prosody model, where� indicates
union andÆ indicates composition operations on WFSTs.

The overall modular structure of our finite-state prosody model
is summarized in Figure 2. Models are generated at two levels: ut-
terance and phrase. At each level two WFSTs are produced: one
describes specific prosodic structures in the training data, and the
other predicts prosody for unseen cases. The prosody prediction
WFST may itself be generated by composing individual transduc-
ers, as in the case of accent and tone prediction at the phrase level.
The template and prosody prediction WFSTs can be combined into
a single transducer by means of the union operation. Finally, the
resulting models at each level (i.e. utterance level and phrase level)
are composed to form the overall prosody model. The order of
terms in the composition corresponds to the order of steps during
prosody prediction, i.e. utterance level prosody is generated first
and then used as a predictor for the phrase level prosody.

Since our approach assumes that there is allowed variability
in a given utterance, no prosodic target will be given zero prosody
cost. However, prosodic templates are likely to contain words or
phrases that were recorded continuously and therefore incur zero



concatenation costs. High template prosody costs may overrule
the zero concatenation cost of longer units when theWFSTs are
composed; hence, the prosody costs should be scaled lower. In
addition, the costs in the template prosody transducer should also
be scaled so that they are (on average) lower than the cost of the
decision tree-based prosody prediction, since the templates (when
applicable) can presumably model prosody with greater accuracy
than the decision tree.

The modular structure allows other levels of prosodic struc-
tures (such as word or paragraph levels) to be easily added if de-
sired. In addition, it is straightforward to incorporate transduc-
ers associated with gradient phenomena such as pitch range and
prominence, though we have not implemented that in this work.

3.2. Unit Selection

The units in the synthesis database can be treated as states in the
finite state transducer with the state transition cost given by the
concatenation cost. In the system implemented for this work, the
concatenation cost between unitsUi andUj is the average Maha-
lanobis distance between overlapping frames:0:5(d1+d2), where
d1 is the distance between the last frame of MFCCs in unitUi and
the frame in unitUj�1 which precedes unitUj (as the database
was naturally recorded), and, similarly,d2 is computed between
the first frame in unitUj and the first frame in unitUi+1 which
follows unit Ui. This approach is more robust than computing a
distance between two consecutive frames, because it does not im-
ply continuity at join points. However, it still can be improved
by including F0, energy and amplitude in the distance metric [6],
which we plan to implement for our future experiments.

The units in the database can be of arbitrary size. It is, how-
ever, important to match the unit inventory to the output of the
prosody prediction module in order to satisfy necessary conditions
for composing the prosody prediction and the unit selection WF-
STs, i.e. the set of output strings from the prosody prediction
WFST must be acceptable as input to the unit selection transducer.
In the case of limited domain synthesis, many of the responses that
a text generator produces are likely to contain words and phrases
that were recorded during data collection. These words and phrases
can be indexed directly and treated as units in the database, and
their sub-word elements can also be used as units. New words can
be synthesized by concatenating subword or even subphone units.

3.3. WFST Composition

At run time the prosody prediction and the unit selection WFSTs
can be composed, resulting in a single WFST capable of trans-
ducing target phonological input into a sequence of database units.
The composition operation is better than a sequential application
of the two transducers because it allows for a wider search space by
not making a hard decision when predicting prosody. The relative
scaling of costs across these two WFSTs can be tuned according
to a given task. Costs for likely prosodic sequences were scaled so
that on average they were close to the average concatenation cost.
Perceptual experiments may be necessary to determine the optimal
scaling.

The modularWFST architecture makes it easy to add new
components to the synthesizer. For example, one can design a
letter-to-soundWFST that models different pronunciations, which
would expand the space of candidate units even further.

Table 1. Perceptual experiment results: each entry shows how
frequently a given version was rated higher than another (ties not
included).

Loosing Winning version
version A B C

A *** 34% 89%
B 45% *** 98%
C 5% 2% ***

4. EXPERIMENTS

We implemented the joint prosody prediction and unit selection as
the synthesis component of a travel planning system developed at
the University of Colorado [8]. The corpus contains approximately
2 hours of speech and was automatically segmented. A trained lin-
guist annotated a subset of the corpus (220 utterances) with ToBI
prosodic labels [11]. To alleviate the data sparsity and to lessen
the effects of labeling inconsistency we have converted the ToBI
labels into a simplified representation, where pitch accents were
compressed into three categories: high (H*, L+H*), downstepped
(!H*, L+!H*, H+!H*), and low (L*, L*+H). The boundary tones
were allowed to maintain all four possible types (L-L%, L-H%,
H-L%, H-H%), but only major prosodic boundaries (break index
4) were annotated.

We constructed prosodic templates (as described in Section
3.1) for several types of target sentences common to the text gener-
ator, each comprised of a sequence of the compressed ToBI labels.
We limited our focus to several types of sentences containing city
names in various prosodic contexts. Through informal interactions
with the dialog system we found that these types of utterances of-
ten had incorrect prosody and could potentially benefit from better
prosody prediction. For this feasibility study, we used words as
the fundamental units in the database, hence we needed to com-
pute very few concatenation points, and pruning of candidate units
was unnecessary.

Fourteen target sentences were synthesized by three different
methods: A) no prosody prediction, with unit selection based en-
tirely on the cepstral concatenation costs; B) only one zero-cost
prosodic target in the template (the most frequent), with all other
alternatives having very high and equal costs; and C) a prosody
template that allows alternative paths weighted according to their
relative frequency (unobserved events are assigned a fixed and sig-
nificantly higher cost). The target sentences were chosen so that
they do not match any single continuously recorded utterance in
the database in its entirety.

We conducted a perceptual experiment, where five subjects,
all native speakers of American English, ranked versions A, B and
C based on their naturalness. The order of sentences and of the
three different utterances for each was randomized. The subjects
were speech researchers but were naive with respect to the system
implementation and corpus. The rankings submitted by one sub-
ject were excluded from the final results because they exhibited a
much larger variance than that of other subjects.

The results of our perceptual experiments (as illustrated in Ta-
ble 1) show that version C was rated the most natural very con-
sistently. Versions A and B did not show consistent preference
differences, though A was rated above B somewhat more often,
probably because it tended to have smoother (and fewer) concate-
nations. Two (from the total of fourteen) sentences happened to
be the most favorable to version A, probably for this reason. Ex-



cluding these sentences brings the winning rate of C over A up to
98%, suggesting that some attention to signal processing aspects of
concatenation would lead to an increased importance of prosodic
match.

5. DISCUSSION

In summary, we have demonstrated that by combining the steps
of prosody prediction and unit selection we can achieve improved
naturalness in speech output. The WFST architecture provides a
very flexible and efficient framework for implementing joint pre-
diction and selection in a TTS system. The flexibility of WFSTs
accommodates the use of variable size units and different forms of
prosody generation. The computational efficiency of WFST com-
position and finding the best path allows real-time synthesis, par-
ticularly for constrained domain applications.

While the experiments here are quite limited in scope, we have
conducted preliminary tests with the Radio News corpus which in-
dicate that the approach can be applied to unrestricted TTS. Unre-
stricted TTS demands the use of subword units in the unit selection
WFST. Smaller units result in a larger network, which requires
more computational power to be constructed. One approach to
reduce the computational complexity is to prune the unit database
[5]. Alternatively, since computing concatenation costs is the slow-
est operation, one can precompute and cache concatenation costs
between the most frequently used pairs of units [2], or vector quan-
tize the space of units and store a complete distance table between
groups of units [1]. The latter approach can be smoothly inte-
grated into the WFST architecture by connecting states represent-
ing units to an intermediate layer of vector-quantized states with
pre-computed transitions between them. Our plans for future work
include building a complete TTS system in the travel domain ca-
pable of synthesizing out-of-domain sentences.
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