PHASE RETRIEVAL OF IMAGESFROM ZEROS OF EVEN UNWRAPPED SIGNALS

Styliani Petroudi and Andrew E. Yagle

Dept. of EECS,The Universityof Michigan,Ann Arbor, Ml 48109-2122aey@eecs.umich.edu

ABSTRACT

The2-D discretephaseetrieval problemis to reconstrucan
imagedefinedat integer coordinatesand having known fi-
nite spatialextentfrom themagnitudeof its discreteFourier
transform. Most methodsfor solving this problemareit-
eratve but not POCS,andthey tendto stagnate.Recently
we developedanew approactihatunwrappedhe2-D prob-
leminto a 1-D problemwith bandsof zerosin it, usingthe
Good-Thomad=FT. However, this approachreconstructed
theevenpartof theimagemuchbetterthantheoddpart,and
it wassensitve to the zerolocations. This paperpresentsa
modificationof this approachNew featurednclude: (1) an
overdeterminegbroblemlesssensitve to thezerolocations;
(2) the solution of a Toeplitz-block-Toeplitz-plus-Hankl-
block-Hanlel linear system;and(3) detailson characteris-
tics of imagesfor which theapproactworksbest.

1. INTRODUCTION

1.1. Basic Problem

Theproblemof reconstructinginimageknown to have com-
pactsupportfrom its Fourier transformmagnitudesarises
in severaldisciplines[1]. Theimageis reconstructedf the
missingFourier phaseis recovered;hencethe term "phase
retrieval” For detailsof the history andapplicationsof this
problemsee[l]. Sincetheimagehascompactsupport,its
Fourier transformmay be sampledin wavenumber Most
imagesareapproximateljpbandlimitedo theextentthatthey
mayalsobe sampledspatiallyaswell. Thisleadsto thedis-
creteversionof this problem,in which a discrete-timam-
ageknown to havefinite spatialextentis to bereconstructed
from the magnitudeof its 2-D discreteFourier transform
(DFT). For detailson phaseretrieval problemssee[2]-[3].

The mostcommonapproachfor phaseretrieval prob-
lemsis to useaniterative transformalgorithm[1], whichal-
ternatebetweerthespatialandwavenumbedomains How-
ever, thesealgorithmsusually stagnatefailing to corverge
to a solution. Otherapproachesequirethe computation-
ally expensve andextremelyunstablenumericaloperation
of trackingzerocurvesof algebraicfunctions. We will not
attemptto list all approachekere.

1.2. Unwrapping Approach

Recently{4] we proposeda novel approactto this problem.
The2-D phaseaetrieval problemwasslantedandupsampled
vertically, andthe Good-Thomad-FT or Agarwal-Cooley
fastcorvolution [5] wasusedto mapthe 2-D probleminto
a 1-D problemof reconstructinga 1-D signalconsistingof
the rows of the imageconcatenatedlternatelywith bands
of zeros. It was notedthat the zerosof the z-transformof
this 1-D signalareall very closeto the unit circle—soclose
that their anglescan be determinedfrom local minima in
its (known) 1-D DTFT magnitude.The evenandodd parts
of the 1-D signalwerethenreconstructecgeparatelffrom
thesezerosapproximatedsbeingontheunit circle.
Althoughthis approactwasshowvn to work in [4], there
areseveral problems: (1) sincethe evenandodd partsare
computeddirectly from the zero locations,they are very
sensitve to thesezerolocations;(2) althoughthe evenpart
of the signalcanbe reconstructedccuratelydirectrecon-
structionof the odd part turnsout to be lessaccurate;(3)
this doesnot take advantageof the known bandsof zeros.

1.3. Contributionsof This Paper

This papermpresentamodificationof our previousapproach
thataddressethe problemsnotedabove, asfollows:

1. Insteadof computingeven and odd partsseparately
we now reconstructhe evenpartfirst, sinceits zeros
dolie ontheunit circle, followed by the oddpart;

2. Insteadof computingthesignaldirectly from thezero
locations,we take advantageof the known bandsof
zerosin the 1-D signalby formulatingthisasanoverde-
terminedleast-squareterpolationproblem,reduc-
ing sensitvity to thezerolocations;

3. We notethatthepseudoinerseof theoverdetermined
Vandermondenatrixfor theinterpolationproblemwith
known bandf zerodeadso a Toeplitzblock Toeplitz
+ Hankel block Hankel linear systenmof equations;

4. lterative methodssuchasthe Landwebeiterationcan
be usedto solve the systemquickly usingthe 2-D
FFT. However, we have foundthatthe QR algorithm
givesbetterresults possiblydueto conditioning.



2. PROBLEM FORMULATION

2.1. Basicsof Phase Retrieval

The 2-D discretephaseretrieval problemis asfollows [2]-
[3]. z(i1,42) is adiscrete-time2-D imageknown to bezero
exceptfor |i1],]i2] < M/2. Givenknowledgeof the 2-D
DFT magnitudeg X (k1 , k)|, computez (i, i) or equiv-
alently X (k1, k2); hencethe term "phaseretrieval” The
exactorderof the 2-D DFT is irrelevant provided eachdi-
mensionexceedL M, sinceit maybe downsamplecr up-
sampledwithout difficulty by computinganinverseDFT of
the old order, followed by a DFT of the new order We
assumethat we are given the autocorrelation(iy,is) =
x(i1,42) * xx(—iy, —iz), theinverseDFT of | X (ki, k2) 2.

Therearetwo trivial ambiguitiesn thisproblem.Clearly
if 2(i1,142) isasolutionthenz(—iy, —iz) and—x (i1, 42) are
alsosolutions.The supportcondition|iy |, |i2| < M/2 need
only betight enoughto preventary translationabmbiguity,
sothattheimagecannot’rattle around”insidethis square.
Excludingthesetrivial ambiguities the 2-D discretephase
retrieval problemalmostsurely hasa uniquesolution [2]-
[3]; we assumehisin thesequel.

The 1-D versionof this problemhasanadditional,non-
trivial ambiguity Therearealmostsurely2™/2 solutionsto
an(M + 1)-point1-D phaseetrieval problemif M is even.
Thiscanbeseerby notingthatthesquareDFT magnitudes
the DFT of theautocorrelatiorof the 1-D signal. Thezeros
of thez-transfornof theautocorrelatioroccurin reciprocal
andconjugatequadruplegif z is azero,thenz*,1/2,1/2*
arealsozeros).Eitherz andz*, or theirreciprocalscanbe
assignedo the 1-D signal;sincethereare M /2 quadruples
this assignmentanbe madein 2M/2 ways (fewer if there
arezeroson theunit circle or realaxis).

2.2. Reformulation as 1-D Problem

We illustratethe reformulationusingthe simpleexample
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Note that both the image pixel valuesand the autocorre-
lation lags have been”slanted; but this doesnot alter the

operationof autocorrelationAlso notethe upsampling(in-

sertingbandsof zerosvertically betweenimage pixel val-

ues); this also doesnot alter the operationof autocorrela-
tion. The generalproblemfor an M x M imagecanbe

reformulatedasa (N? — 1) x N 2-D cyclic corvolution,

whereN > 2M — 1, which ensureshatthereis noaliasing.
Thereasorfor using(N?2 — 1) is explainednext.

2.3. Unwrapping 2-D to 1-D using Agarwal-Cooley

The Agarwal-Coole fast convolution algorithm mapsan
N; x Ny-order2-D cyclic convolutionto an Ny No-point 1-
D cyclic corvolution usinga residuenumbersystem(RNS)
mappingz (i1,i2) — (i) where

i =i1(mod Ny); i =iz(modNy), 3)

whereN; andN, arerelatively prime. SinceN?2 — 1 and NV
arerelatively prime,we canuseAgarwal-Cooley to rewrite
the2-D cyclic convolution (2) asa 24-point1-D cyclic con-
volutionz(n) * z(—n) = r(n), viz.

{1,2,0,3,4,0...0} x{0...0,4,3,0,2,1}

={30,14,6,11,4,0...0,4,11,6, 14} (4)

Thezero-paddingn (4) makesthiscyclic corvolutionequiv-
alentto alinearconvolution. Note thebandsof singlezeros
in the unwrappedmage,whichis formedby concatenating
rows of the originalimage,alternatingwith bandsof zeros.
Sincethe 1-D autocorrelationis alsoan unwrappingof the
2-D autocorrelationthe magnitudeof the DTFT of theun-
wrappedmageis known.

Alternately we may usethe Good-Thomad=FT maps
anN; x Ny-orderhe=FT to an Ny No-point1-D DFT using
anRNS mapping;see[4] for details.

3. SOLUTION OF UNWRAPPED PROBLEM

3.1. Problem with Previous Approach

In [4] we proposedhereconstructiorof theunwrappedig-
nal z(n) from its known autocorrelatiorr(n) by observing
thatthe zerosof the z-transformR(z) of thelatterarevery
closeto theunit circle. At thefrequenciess; corresponding
to the anglesof thesezeros,the known DTFT magnitude
| X (e¥)| is nearzero, so that the real andimaginaryparts
mustbothalsobe nearzero. Recallingthatthe evenz, (n)
andoddz,(n) partsof z(n) aredefinedas

ze(n) = (z(n)+z(-n))/2 = dtft'[Re[X (e/)]]; (5a)

zo(n) = (2(n) — x(-n))/2 = dtft~ [Im[X ()]},
(5b)
thesecanbereconstructedrom thesefrequenciesising

Xo(2) = [[(z = e ©)



andsimilarly for X, (z). Somecomplicationsn reconstruct-
ing X,(z) anddeterminingscalefactorswerenotedin [4].

All of the material to follow isentirely new.

We have obsenedthatthis approachreconstructs:, (n)
well, but reconstructse,(n) not nearly aswell as z.(n).
Thereasoris shovnin Fig. 1. Fig. laplotsthe zerosof

z(n) ={2,0...0,1,4,0...0,3} (1)

9 zeros 9 zeros

while Fig. 1b plotsthe zerosof its even partandFig. 1c
plots the zerosof its odd part. Note thatthe zerosof z(n)

arecloseto the unit circle, but the zerosof z.(n) lie on the
unit circle, with anglesvery closeto theanglesof the zeros
of z(n). However, thezerosof z,(n) arefartheraway from

theunit circle thanthoseof z(n) or z,(n).

Thereasorfor thisis illustratedin Fig. 2, whichshaov a
largerunwrappedmage.Fig. 2ashowvs z(n) (notethe zero
bands),Fig. 2b shaws z.(n) (notethe similarity to z(n),
even thoughit is only the even part), and Fig. 2c shows
z,(n). Dueto their similar appearancat is not surprising
that the zerosof both z(n) andz.(n) lie closeto the unit
circle,while the zerosof z,(n) maynot. We have obsened
this repeatedlyfor imageswith non-neyative pixels (which
is the caseof practicalinterest)and especiallyfor images
whosepixel valueslie in a boundedrange,for which this
approachworksbest.

3.2. Summary of New Approach

Although z.(n) canbe reconstructedising (6), this does
nottake advantageof thebandsof zerosin z.(n) whichare
apparentn Fig. 2b. This motivatesthe following approach:

1. Thresholdheknown DTFT squaremagnitude X (e/«)|?
to determineghefrequenciesy; where| X (e/«#)| = 0.
As Fig. 1 shaws,e?“i (on theunit circle) aregoodap-
proximationgto the actualzerosof z.(n);

2. Reconstruct:. (n) by solvingthe overdetermined

! y X (e
cos(wi) cos(MTZ(Ul) l"e.(l) ) | (0 I
cos(.wL) cos(%wL) l"e(MT) 0

(8)

whereL is thenumberof frequenciesisedand M2 /2
is thenumberof unknowvn nonzero valuesof . (n);

3. Usingthecomputedz.(n) in (5a),compute
Im[X ()] = |X(e/)|” — Re[X (¢)]*  (9)

anddetermindghefrequencies; of its zerocrossings;

4. Reconstruct,(n) by solvinganoverdeterminedys-
temanalogouso (8) but with sinesratherthancosines;

5. Determinethescalefactorfor z,(n) usingafit to the
known valuesof Im[X (e?)]2.

This approacloffersthefollowing advantage®ver[4]:

1. It takes advantageof the known bandsof zerosin
z.(n) to producean overdeterminegroblemwhich
is lesssensitve to errorsin the anglesof the zeros;

2. It requiresonly thatthe zerosof z. (n) lie closeto the
unit circle (which they do), notthe zerosof z,(n) to
lie closeto the unit circle (which they maynot);

3. It avoidsthescalefactorcomputatiorin [4].

A disadwantageis that the reconstructiorof z,(n) is af-
fectedby errorsin the reconstructiorof z.(n). However,
thelattercanbereconstructedhnuchmoreaccuratelysothe
independencef thereconstructioné [4] is not helpful.

3.3. Computation of Solution

The least-squaresolutionto the overdeterminegroblem
(8) usesthe pseudoinerseof thematrix V' in (8); it solves

(VIV)z, = VI[| X (e7)],0...0]" = | X ()|[1,1...1]".

(10)
The (i, j)** elementof VTV hastheform
L
2VIV);; =2 Z cos(iwy) cos(jwn)
n=1

= Z cos((i — J)wn) + Z cos(i + j)wn) (11)

exceptthatrows andcolumnscorrespondingo the bandsof
zerosin z.(n) have beendeleted. The resultingmatrix is
Toeplitz-block-Toeplitzplus Hankel-block-Hanlel.

Hence(8) canbesolvediteratively usingthe Landweber
iteration, sincethe matrix-vectorproductsrequiredat each
iteration can be computedquickly usingthe 2-D FFT. Or
usevariationson the multichannelL evinsonalgorithm.

A analogousdentity canbe usedto write the systemto
besolvedfor z,(n) asToeplitz-block-ToeplitzminusHankel-
block-Hanlel. Similar commentsapply.

Another approachthat was tried wasto omit the first
row of (8). Thenthe problemis to computethe eigervector
associateavith the minimum eigervalueof V7V, i.e., the
minimum singularvectorof V' (omitting its first row). This
canbecomputedy usingthe power methodto computethe
maximumsingularvalue o,,,,, andthen usingthe power
methodagainto computethe maximumsingularvector of
o2,..I — VTV, whichis the desiredvector However, this

mazr

did notgive resultsthatwereasgood.



3.4.

Summary of Results

Dueto lack of spacewe summarizeour resultshere:

1. This approachworkswell whenthe imagepixel val-

[1]

(2]

3]

[4]

[5]

uesdo not vary too much (on a percentagdasis),as
in Fig. 2. For suchimages,the unwrapped!-D sig-
nal tendsto have zeroscloserto the unit circle than
imageswith widely varyingpixel values.Sincemary
imagegdoin facthave anarron rangeof pixel values,
thisis nota significantproblem;

. We obtainbetterresultsusingthe QR decomposition

of the matrix in (8) thanby usingthe pseudoinerse
solution. We attribute this to numericalconditioning
problems. However, this increaseghe computation
significantly;

Sincethe zerosof the autocorrelationR(z) lie very
closeto the unit circle, their approximatelocations
areindicatedby dipsin the magnitudeof the DTFT
of R(z). However, we may usetheseapproximatdo-

cationsasaninitialization of Newton’smethodto find
the exactzerosof R(z), andtheir angles.Useof the
anglesof the actualzerolocationsimproves perfor
mance againat the price of increaseadomputation;

Dueto lack of spacewe do not presentdetailedre-
constructiondiere. Thesewill bepresentectICASSP
andin thefull-length paper
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