
PHASE RETRIEVAL OF IMAGES FROM ZEROS OF EVEN UNWRAPPED SIGNALS

Styliani Petroudi and Andrew E. Yagle

Dept.of EECS,TheUniversityof Michigan,Ann Arbor, MI 48109-2122aey@eecs.umich.edu

ABSTRACT

The2-D discretephaseretrievalproblemis to reconstructan
imagedefinedat integer coordinatesandhaving known fi-
nitespatialextentfrom themagnitudeof its discreteFourier
transform. Most methodsfor solving this problemare it-
erative but not POCS,andthey tendto stagnate.Recently
wedevelopedanew approachthatunwrappedthe2-D prob-
lem into a 1-D problemwith bandsof zerosin it, usingthe
Good-ThomasFFT. However, this approachreconstructed
theevenpartof theimagemuchbetterthantheoddpart,and
it wassensitive to thezerolocations.This paperpresentsa
modificationof this approach.New featuresinclude:(1) an
overdeterminedproblemlesssensitiveto thezerolocations;
(2) the solution of a Toeplitz-block-Toeplitz-plus-Hankel-
block-Hankel linearsystem;and(3) detailson characteris-
ticsof imagesfor which theapproachworksbest.

1. INTRODUCTION

1.1. Basic Problem

Theproblemof reconstructinganimageknowntohavecom-
pactsupportfrom its Fourier transformmagnitudesarises
in severaldisciplines[1]. Theimageis reconstructedif the
missingFourierphaseis recovered;hencethe term ”phase
retrieval.” For detailsof thehistoryandapplicationsof this
problemsee[1]. Sincethe imagehascompactsupport,its
Fourier transformmay be sampledin wavenumber. Most
imagesareapproximatelybandlimitedto theextentthatthey
mayalsobesampledspatiallyaswell. This leadsto thedis-
creteversionof this problem,in which a discrete-timeim-
ageknown to havefinite spatialextentis to bereconstructed
from the magnitudeof its 2-D discreteFourier transform
(DFT). For detailson phaseretrieval problemssee[2]-[3].

The most commonapproachfor phaseretrieval prob-
lemsis to useaniterativetransformalgorithm[1], whichal-
ternatebetweenthespatialandwavenumberdomains.How-
ever, thesealgorithmsusuallystagnate,failing to converge
to a solution. Other approachesrequirethe computation-
ally expensive andextremelyunstablenumericaloperation
of trackingzerocurvesof algebraicfunctions.We will not
attemptto list all approacheshere.

1.2. Unwrapping Approach

Recently[4] weproposedanovel approachto thisproblem.
The2-D phaseretrievalproblemwasslantedandupsampled
vertically, and the Good-ThomasFFT or Agarwal-Cooley
fastconvolution [5] wasusedto mapthe2-D probleminto
a 1-D problemof reconstructinga 1-D signalconsistingof
the rows of the imageconcatenatedalternatelywith bands
of zeros. It wasnotedthat the zerosof the z-transformof
this 1-D signalareall very closeto theunit circle–soclose
that their anglescan be determinedfrom local minima in
its (known) 1-D DTFT magnitude.Theevenandoddparts
of the 1-D signalwerethenreconstructedseparatelyfrom
thesezeros,approximatedasbeingon theunit circle.

Althoughthis approachwasshown to work in [4], there
areseveral problems:(1) sincethe even andodd partsare
computeddirectly from the zero locations,they are very
sensitive to thesezerolocations;(2) althoughtheevenpart
of the signalcanbereconstructedaccurately, direct recon-
structionof the odd part turnsout to be lessaccurate;(3)
this doesnot takeadvantageof theknown bandsof zeros.

1.3. Contributions of This Paper

Thispaperpresentsamodificationof ourpreviousapproach
thataddressestheproblemsnotedabove,asfollows:

1. Insteadof computingeven andodd partsseparately,
we now reconstructtheevenpartfirst, sinceits zeros
do lie on theunit circle, followedby theoddpart;

2. Insteadof computingthesignaldirectly from thezero
locations,we take advantageof the known bandsof
zerosin the1-Dsignalby formulatingthisasanoverde-
terminedleast-squaresinterpolationproblem,reduc-
ing sensitivity to thezerolocations;

3. Wenotethatthepseudoinverseof theoverdetermined
Vandermondematrixfor theinterpolationproblemwith
knownbandsof zerosleadsto aToeplitzblockToeplitz
+ Hankel blockHankel linearsystemof equations;

4. IterativemethodssuchastheLandweberiterationcan
be usedto solve the systemquickly using the 2-D
FFT. However, we have foundthat theQR algorithm
givesbetterresults,possiblydueto conditioning.



2. PROBLEM FORMULATION

2.1. Basics of Phase Retrieval

The2-D discretephaseretrieval problemis asfollows [2]-
[3]. �����������
	�� is adiscrete-time2-D imageknown to bezero
exceptfor 
 ��� 
 � 
 �
	 
�������� . Given knowledgeof the 2-D
DFT magnitudes
 � ����������	�� 
 , compute�����������
	�� or equiv-
alently � ����� ����	�� ; hencethe term ”phaseretrieval.” The
exact orderof the 2-D DFT is irrelevantprovidedeachdi-
mensionexceeds��� , sinceit maybedownsampledor up-
sampledwithoutdifficulty by computinganinverseDFT of
the old order, followed by a DFT of the new order. We
assumethat we are given the autocorrelation! �"� � ��� 	 �$#�%�"� � ��� 	 �%&'&��%��('� � ��('� 	 � , theinverseDFT of 
 � ��� � ��� 	 � 
 	 .

Therearetwo trivial ambiguitiesin thisproblem.Clearly
if �%����� ���
	�� is asolutionthen ���)('������('�*	+� and ('�����������
	�� are
alsosolutions.Thesupportcondition 
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 �
	 
,�-���.� need
only betight enoughto preventany translationalambiguity,
so that the imagecannot”rattle around”insidethis square.
Excludingthesetrivial ambiguities,the 2-D discretephase
retrieval problemalmostsurelyhasa uniquesolution [2]-
[3]; weassumethis in thesequel.

The1-D versionof this problemhasanadditional,non-
trivial ambiguity. Therearealmostsurely �./10 	 solutionsto
an � �3254 � -point1-D phaseretrieval problemif � is even.
Thiscanbeseenby notingthatthesquareDFT magnitudeis
theDFT of theautocorrelationof the1-D signal.Thezeros
of thez-transformof theautocorrelationoccurin reciprocal
andconjugatequadruples(if 6 is a zero,then 6�7 � 4 � 6 � 4���6�7
arealsozeros).Either 6 and 6 7 , or their reciprocals,canbe
assignedto the1-D signal;sincethereare ���.� quadruples
this assignmentcanbe madein ��/10 	 ways(fewer if there
arezeroson theunit circleor realaxis).

2.2. Reformulation as 1-D Problem

We illustratethereformulationusingthesimpleexample8 49�:<;>= &'& 8 ; :� 4 = #@?A ; 4.4 B4 ;C:.D 4 ;B 4.4 ;FEGIH � 4 �
Note(1) canbewrittenasthe JLK :

cyclic convolution
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Note that both the imagepixel valuesand the autocorre-
lation lagshave been”slanted,” but this doesnot alter the

operationof autocorrelation.Also notetheupsampling(in-
sertingbandsof zerosvertically betweenimagepixel val-
ues); this alsodoesnot alter the operationof autocorrela-
tion. The generalproblemfor an �CKP� imagecan be
reformulatedasa �"Q 	 ( 4 � K Q 2-D cyclic convolution,
whereQ3R �.� ( 4 , whichensuresthatthereis noaliasing.
Thereasonfor using ��Q 	 ( 4 � is explainednext.

2.3. Unwrapping 2-D to 1-D using Agarwal-Cooley

The Agarwal-Cooley fast convolution algorithm mapsanQS� K QT	 -order2-D cyclic convolutionto an QS�UQV	 -point1-
D cyclic convolutionusinga residuenumbersystem(RNS)
mapping�����������
	��XWY�����)� where�Z#[�����"\^] _�QS���U`a�>#[�
	.��\F] _bQV	+�c� � : �
whereQ � and Q 	 arerelatively prime.SinceQ 	 ( 4 and Q
arerelatively prime,we canuseAgarwal-Cooley to rewrite
the2-D cyclic convolution(2) asa24-point1-D cyclic con-
volution ����de�%&����)('de�X# ! ��de� , viz.f 4 � � � D � : � ; � D H�H�H D,g & f D H�H�H D � ; � : � D � � � 4 g# f :�D � 4 ; � B � 4�4 � ; � D H�H�H D � ; � 4�4 � B � 4 ;hg � ; �
Thezero-paddingin (4)makesthiscyclic convolutionequiv-
alentto a linearconvolution. Notethebandsof singlezeros
in theunwrappedimage,which is formedby concatenating
rows of theoriginal image,alternatingwith bandsof zeros.
Sincethe1-D autocorrelationis alsoanunwrappingof the
2-D autocorrelation,themagnitudeof theDTFT of theun-
wrappedimageis known.

Alternately, we may usethe Good-ThomasFFT maps
an Q � K Q 	 -orderheFFTto an Q � Q 	 -point1-D DFT using
anRNSmapping;see[4] for details.

3. SOLUTION OF UNWRAPPED PROBLEM

3.1. Problem with Previous Approach

In [4] weproposedthereconstructionof theunwrappedsig-
nal �%�"de� from its known autocorrelation! ��de� by observing
that thezerosof thez-transformi � 6 � of thelatterarevery
closeto theunit circle. At thefrequenciesj�k corresponding
to the anglesof thesezeros,the known DTFT magnitude
 � �"l�m�no� 
 is nearzero,so that the real andimaginaryparts
mustbothalsobenearzero. Recallingthat theeven �qp���de�
andodd �sr.�"de� partsof �%��de� aredefinedas� p ��de�X#t������de� 2 ���)('de��� ��� #�_.u�vquxw � y i l y � ��l m�n �*z{z*`1��|�},�� r ��de�b#~������de�Z(��%��('de��� ��� #[_�u�vqu w � y � \ y � ��l m�n �
z�z �c� ���|.�c�
thesecanbereconstructedfrom thesefrequenciesusing� p � 6 �X#���� 6 (�l�w m�n�� � � B �



andsimilarly for � r � 6 � . Somecomplicationsin reconstruct-
ing � r � 6 � anddeterminingscalefactorswerenotedin [4].

All of the material to follow is entirely new.
Wehaveobservedthatthisapproachreconstructs�qp �"de�

well, but reconstructs�sr.�"de� not nearly as well as �qp �"de� .
Thereasonis shown in Fig. 1. Fig. 1aplotsthezerosof�%�"de�b# f � � D H�H�H D� �U� ��,� p
�xr�� � 4 � ; � D H�H�H D� �c� ���� p)��r�� � :,g ���.�
while Fig. 1b plots the zerosof its even part andFig. 1c
plots the zerosof its oddpart. Note that thezerosof �%�"de�
arecloseto theunit circle,but thezerosof �sp ��de� lie on the
unit circle,with anglesverycloseto theanglesof thezeros
of �%��de� . However, thezerosof �sr.�"de� arefartheraway from
theunit circle thanthoseof ����de� or �qr���de� .

Thereasonfor this is illustratedin Fig. 2, whichshow a
largerunwrappedimage.Fig. 2ashows �%��de� (notethezero
bands),Fig. 2b shows � p ��de� (note the similarity to �%�"de� ,
even thoughit is only the even part), and Fig. 2c shows� r ��de� . Due to their similar appearance,it is not surprising
that the zerosof both �%��de� and � p �"de� lie closeto the unit
circle,while thezerosof � r ��de� maynot. We haveobserved
this repeatedlyfor imageswith non-negativepixels (which
is the caseof practicalinterest)andespeciallyfor images
whosepixel valueslie in a boundedrange,for which this
approachworksbest.

3.2. Summary of New Approach

Although � p �"de� can be reconstructedusing (6), this does
not takeadvantageof thebandsof zerosin � p ��de� whichare
apparentin Fig. 2b. Thismotivatesthefollowing approach:

1. ThresholdtheknownDTFTsquaremagnitude
 � ��l�m�ns� 
 	
to determinethefrequenciesj k where 
 � �"l�m�n��)� 
�� D

.
As Fig. 1 shows, l�m�n�� (on theunit circle)aregoodap-
proximationsto theactualzerosof �qp �"de� ;

2. Reconstruct� p �"de� by solvingtheoverdetermined

?MMMA
4 4����� � j ��� ����� � /S�	 j �c�
...

...����� � j�� � ����� � /S�	 j>� �
EONNNG ?MA � p � 4 �

...�sp � /S�	 � EONG # ?MMA 
 �
�"l�m���� 
D
...D EONNG� J �

where� is thenumberof frequenciesusedand � 	 ���
is thenumberof unknown nonzero valuesof � p ��de� ;

3. Usingthecomputed� p ��de� in (5a),compute� \ y � �"l m�n �*z 	 # 
 � ��l m�n � 
 	 ( i l y � ��l m�n �*z 	 �"���
anddeterminethefrequencies�j>k of its zerocrossings;

4. Reconstruct� r �"de� by solvinganoverdeterminedsys-
temanalogousto (8)butwith sinesratherthancosines;

5. Determinethescalefactorfor � r ��de� usingafit to the
known valuesof

� \ y � �"l�m�ns�
z 	 .
Thisapproachoffersthefollowing advantagesover [4]:

1. It takes advantageof the known bandsof zerosin�qp �"de� to producean overdeterminedproblemwhich
is lesssensitive to errorsin theanglesof thezeros;

2. It requiresonly thatthezerosof �qp �"de� lie closeto the
unit circle (which they do), not thezerosof �sr.�"de� to
lie closeto theunit circle (which they maynot);

3. It avoidsthescalefactorcomputationin [4].

A disadvantageis that the reconstructionof � r �"de� is af-
fectedby errorsin the reconstructionof � p �"de� . However,
thelattercanbereconstructedmuchmoreaccurately, sothe
independenceof thereconstructionsin [4] is not helpful.

3.3. Computation of Solution

The least-squaressolution to the overdeterminedproblem
(8) usesthepseudoinverseof thematrix � in (8); it solves� �1�%� �.��sp�# �1� y 
 � ��l m�� � 
 � D H�H�H D z �¡# 
 � ��l m�� � 
 y 4 � 4 H�H�H 4 z¢� H� 4 D �
The ���x� � �)£"¤ elementof � � � hastheform

� � � � � � k�¥ m # � �¦§�¨ � ����� �"� j § � ����� � �.j § �
# �¦§.¨ � ����� ������( � � j § � 2 �¦§�¨ � ����� ��� 2©� � j § � � 4�4 �

exceptthatrowsandcolumnscorrespondingto thebandsof
zerosin � p ��de� have beendeleted. The resultingmatrix is
Toeplitz-block-ToeplitzplusHankel-block-Hankel.

Hence(8) canbesolvediteratively usingtheLandweber
iteration,sincethe matrix-vectorproductsrequiredat each
iteration canbe computedquickly using the 2-D FFT. Or
usevariationson themultichannelLevinsonalgorithm.

A analogousidentity canbeusedto write thesystemto
besolvedfor � r ��de� asToeplitz-block-ToeplitzminusHankel-
block-Hankel. Similar commentsapply.

Another approachthat was tried was to omit the first
row of (8). Thentheproblemis to computetheeigenvector
associatedwith the minimumeigenvalueof � � � , i.e., the
minimumsingularvectorof � (omitting its first row). This
canbecomputedby usingthepowermethodto computethe
maximumsingularvalue ª¬«'­U® , and thenusing the power
methodagainto computethe maximumsingularvectorofª 	«'­U® � ( � � � , which is thedesiredvector. However, this
did not give resultsthatwereasgood.



3.4. Summary of Results

Dueto lackof space,we summarizeour resultshere:

1. This approachworkswell whenthe imagepixel val-
uesdo not vary too much(on a percentagebasis),as
in Fig. 2. For suchimages,the unwrapped1-D sig-
nal tendsto have zeroscloserto the unit circle than
imageswith widely varyingpixel values.Sincemany
imagesdo in facthaveanarrow rangeof pixel values,
this is not a significantproblem;

2. We obtainbetterresultsusingtheQR decomposition
of the matrix in (8) thanby usingthe pseudoinverse
solution. We attribute this to numericalconditioning
problems. However, this increasesthe computation
significantly;

3. Sincethe zerosof the autocorrelationi � 6 � lie very
closeto the unit circle, their approximatelocations
areindicatedby dips in the magnitudeof the DTFT
of i � 6 � . However, wemayusetheseapproximatelo-
cationsasaninitializationof Newton’smethodto find
theexactzerosof i � 6 � , andtheir angles.Useof the
anglesof the actualzero locationsimprovesperfor-
mance,againat thepriceof increasedcomputation;

4. Due to lack of space,we do not presentdetailedre-
constructionshere.Thesewill bepresentedatICASSP
andin thefull-lengthpaper.
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Fig. 1. Figs.1a,1b,1c:Zerosof ����de�c��� p ��de�c��� r ��de�
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Fig. 2. Fig. 2a: Unwrappedsignal
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Fig. 3. Figs.2b,2c:Evenandoddparts


