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ABSTRACT

Existing evidence for and against sea clutter being chaotic
and nonlinearly predictable is briefly discussed. Despite
the uncertainty surrounding the chaotic nature of sea clutter,
and its nonlinear predictability, the purpose of this paper is
to examine what the best design criterion is for a nonlinear
predictor which is to be used to detect targets against clutter
which is known to be chaotic: mean square error perform-
ance or capturing the chaotic clutter’s underlying dynamics.
Single pulse detection analysis using a Swerling I target and
chaotic“clutter” is carried out using predictor-based detect-
ors in an attempt to determine which criterion is most suit-
able. The predictor detectors are compared with standard
detection strategies.

1. INTRODUCTION

Researchers at McMaster University in Canada have claimed
that sea clutter is a chaotic process [1] and that nonlinear
predictor (NLP) networks can be used to improve the per-
formance of maritime surveillance radars [2, 3]. However,
criticisms of the measures used in [1] to categorise chaotic
behaviour have been levelled [4, 5] which have thus called
in to question the chaotic nature of sea clutter. Recent evid-
ence [6] has challenged the view that NLP’s can improve
maritime surveillance radar performance.

Despite the uncertainty surrounding the chaotic nature
of sea clutter, and its nonlinear predictability, the purpose
of this paper is to examine what the best design criterion is
for a NLP which is to be used to detect targets against clutter
which is known to be chaotic. The reason for this investiga-
tion is that researchers at McMaster University [3] have ad-
vocated designing the NLP so that it captures the underlying
dynamics [3,7] of the chaotic clutter. However, recently [8]
it has been found that capturing the underlying dynamics of
a signal is not necessarily consistent with achieving the best
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mean square error (MSE) prediction performance. Essen-
tially, the aim of this paper is to investigate which would
work better, if clutterwerefound to be chaotic: a NLP de-
tector (NLPD) [7] that consists of a NLP which had been
trained to capture the chaotic clutter’s underlying dynam-
ics, or one which consisted of a NLP that had been trained
to perform better, in terms of MSE prediction performance,
than the NLP that had learnt the underlying dynamics.

This investigation was carried out using Lorenz data [9]
corrupted by white Gaussian noise as the“clutter” signal.
Lorenz data is known to be chaotic, and therefore has known
associated underlying dynamics. Noise was added as it was
felt that this would more closely model a situation found in
practice, plus it makes the problem of capturing the under-
lying dynamics of the Lorenz signal more difficult [8].

The paper is structured as follows. In section 2 noisy
Lorenz data generation is described. In section 3 the de-
tection strategies used are explained. In section 4 single
pulse detection analysis using a Swerling I [10] target and
the noisy Lorenz“clutter” is presented. Conclusions are
presented in section 5.

2. GENERATING NOISY LORENZ DATA

The following coupled system of three nonlinear differential
equations [11],
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where � � , � � , and
� � are dimensionless, describe the dy-

namics of the Lorenz attractor. For� � =10,
� � 
 #% , the

system behaves chaotically, whenever the Rayleigh number
� � exceeds a critical value, which is approximately 24.74



[9]. Equation (1) can be solved for
� � � �

using a
� � �

order
Runge-Kutta [12] technique with a suitable discrete step-
size to produce a discrete Lorenz time series. White Gaus-
sian noise [12] was added to the Lorenz data, the signal to
noise ratio (SNR),
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where� �� � � �  " is the variance of the signal of interest (in this
case the Lorenz data), and� �� $ � � & is the variance of the noise,
was 25dB.

3. DETECTION STRATEGIES

A block diagram of a predictor detector is given in Figure
1. A K-step ahead predictor (linear, Volterra series filter
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Fig. 1. Predictor-detector.

(VSF) [6,7,13], or normalised radial basis function network
(NRBFN) [8,14]) was trained (for details on the training see
[8]), then clutter samples which were not used to train the
predictor : � ; � 3 � <

were presented to the predictor through
a K-step delay. The clutter data: � ; � 3 � <

could consist of
clutter alone, or clutter plus target. To determine if a target
was present or not, the predictor error2 � 3 �

was compared
with a threshold level

7 � . If the predictor error was greater
than the threshold a target was declared to be present, and if
it was less than the threshold level a target was not declared
to be present.

Two different types of standard detectors [10] were used
to compare with the predictor detectors. The two techniques
used were a fixed threshold detector, and a cell-averaging
constant false alarm rate detector (CA-CFAR). In particular,
for the purposes of this paper, a distinction will be made
between a CA-CFAR with a sliding window before the test
cell, and a forward-backward CA-CFAR (FB-CA-CFAR),
which has a sliding window either side of the test cell.

4. SINGLE PULSE DETECTION AGAINST A
CHAOTIC CLUTTER BACKGROUND

The NRBFN predictors (NRBFNP’s) used in [8] for the
prediction analysis of the noisy Lorenz data were used for

the detection analysis involving the noisy Lorenz“clutter” .
In [8] it was shown that capturing a chaotic signal’s underly-
ing dynamics was not necessarily consistent with achieving
the best MSE prediction performance. Specifically, it was
shown that a NRBFNP with an embedding dimension (i.e.
number of input nodes) of 7, an embedding delay (i.e. delay
between each input node) of 3 samples, 400 kernels, and a
training length of 2000 samples could be used to success-
fully capture the underlying dynamics of the noisy Lorenz
data, whereas a NRBFNP with an embedding dimension of
7, an embedding delay of 1 sample, 400 kernels, and a train-
ing length of 2000 samples was not able to successfully cap-
ture the underlying dynamics, but did achieve a better MSE
performance.

Detection analysis was carried out using the noisy Lorenz
clutter, and a Swerling I target, for a signal to clutter ratio
(SCR) of -6.99dB, where the target is the signal, and the
noisy Lorenz data is the clutter. The following detectors
were used. In addition to the NRBFN predictor detectors
(NRBFNPD’s), a linear predictor detector (LPD) with 30
taps, a VSF predictor detector (VSFPD) with an embedding
dimension of 10 and embedding delay of 1 sample, a CA-
CFAR with a window of size 1, a FB-CA-CFAR with a win-
dow of size 1 in the forward section and 1 in the backward
section, and a fixed threshold detector were all used. Note
that the sizes of the CFAR windows were found to be op-
timal in terms of detection performance. A prediction step
of 1 sample (i.e. K=1) was used by each predictor. The fol-
lowing detection simulation parameters were common to all
the detectors.?

Training data set length: 2000 samples.?
Non-training data set length: 35,000 samples.?
Number of target samples: 35,000.

The receiver operating curve (ROC) detection results for the
above simulations are plotted in Figure 2. The prediction
performance of the predictor detectors and CFAR detectors1

are given in Table 1, in terms of normalised mean square
error (NMSE),
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where � �J is the variance of
�

over K samples, K is the pre-
diction step, which was set equal to 1 sample for this detec-
tion analysis,

� � 3 R T �
is the actual sample to be predicted

at time step
3

and
V� � 3 R T � � � is the predictor’s estimate of

the actual sample to be predicted at time step
3

. From the
1A CFAR can be considered as a crude predictor, and consequently a

NMSE figure can be worked out for it, using the CFAR error values, on the
training and non-training data sets
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Fig. 2. Detection analysis using noisy Lorenz data for a
SCR of -6.99dB.

Predictor Training Non-training
NMSE [dB] NMSE [dB]

NRBFNP, � =1 -23.63 -21.19
NRBFNP, � =3 -21.59 -18.70
VSFP -23.38 -21.79
LP -15.77 -15.52
FB-CA-CFAR -19.90 -19.92
CA-CFAR -11.02 -11.08

Table 1. Prediction NMSE performance for predictors on
noisy Lorenz data, where� denotes embedding delay.

results in Figure 2, it can be seen that the NRBFNPD with
an embedding delay of 1 sample performed as well as, or
better than, the NRBFNPD with an embedding delay of 3
samples. Taking into account the prediction results in Table
1, the NRBFNPD with the better NMSE performed better
than the NRBFNPD which was able to capture the underly-
ing dynamics of the noisy Lorenz data. From this evidence,
given the choice between NMSE and capturing a signal’s
underlying dynamics, the predictor with the better NMSE
should be incorporated into a predictor detector in favour of
the predictor which captured the dynamics.

The rule that a better (i.e. more negative) NMSE value
makes for a better predictor detector, or CFAR detector,
seems to apply in Figure 2, except for the case of the NRB-
FNPD with an embedding delay of 3 samples (i.e. the net-
work that managed to capture the underlying dynamics of
the noisy Lorenz data). This NRBFNPD managed to achieve
a better non-training data set NMSE value than the LPD,
but for low

� � �
values the NRBFNPD with an embedding

delay of 3 samples performed more poorly than the LPD.

The reason for the poorer performance of the NRBFNPD,
with an embedding delay of 3 samples, can be seen by con-
sidering the predictor errors plotted in Figure 3. The reason
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Fig. 3. Predictor errors from the target detection analysis
against a noisy Lorenz background: predictor errors for (a)
a NRBFNPD with an embedding dimension of 7 and an em-
bedding delay of 1 sample, (b) a NRBFNPD with an embed-
ding dimension of 7 and an embedding delay of 3 samples,
and (c) a LPD with 30 taps.



why the NRBFNPD with an embedding delay of 1 sample
performed better than the NRBFNPD with an embedding
delay of 3 samples, and the LPD, is because it produced
smaller errors than the other predictor detectors, which al-
lowed a better distinction to be made between error plus
target samples and error only samples. The LPD was able
to perform better than the NRBFNPD with an embedding
delay of 3 samples, due to the same reason. Although the
NRBFNPD with an embedding delay of 3 samples had a
betteroverallNMSE value, it contained many error samples
that were larger than those of the LPD, which resulted in
poorer performance than the LPD, at low

� � �
values.

5. CONCLUSIONS

To summarise the results in section 4, for the case of training
a NLP for use in a NLPD, it would appear that the smallest
NMSE criterion would be preferred to the criterion of train-
ing a NLP to capture a signal’s underlying dynamics, given
that the network which had learnt the underlying dynamics
had a poorer NMSE than the network which had not learnt
the underlying dynamics. However, as in the case of the
NRBFNPD with an embedding delay of 3 samples, using
NMSE alone as a guide to the performance of a predictor
detector can be deceiving.

In terms of processing chaotic signals, increasing the
embedding delay has the effect of“opening out” the at-
tractor in state space, which reduces the likelihood that noise
will cause any vector to erroneously evolve (or jump) to the
wrong part of the attractor. Avoiding such erroneous evol-
ution eventualities results in correctly capturing the under-
lying dynamics of the chaotic signal in question. It would
appear that increasing the embedding delay of a NLP has
a negative impact on the performance of the correspond-
ing NLPD. Therefore, capturing the underlying dynamics
of chaotic clutter, and thus being able to reconstruct its at-
tractor in state space do not appear to be consistent with
designing the best NLPD from the evidence presented in
this paper.
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