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ABSTRACT mean square error (MSE) prediction performance. Essen-

Existing evidence for and against sea clutter being chaotictially: the aim of this paper is to investigate which would

and nonlinearly predictable is briefly discussed. Despite WOTk better, if cluttewerefound to be chaotic: a NLP de-
the uncertainty surrounding the chaotic nature of sea clutter,{€ctor (NLPD) [7] that consists of a NLP which had been

and its nonlinear predictability, the purpose of this paper is rained to capture the chaotic clutter's underlying dynam-
to examine what the best design criterion is for a nonlinear ICS: Or one which consisted of a NLP that had been trained
predictor which is to be used to detect targets against clutter® Perform better, in terms of MSE prediction performance,
which is known to be chaotic: mean square error perform- than the NLP that had learnt the underlying dynamics.

ance or capturing the chaotic clutter's underlying dynamics. ~ 1his investigation was carried out using Lorenz data [9]
Single pulse detection analysis using a Swerling | target andc0rrupted by white Gaussian noise as tbletter” signal.
chaotic'clutter” is carried out using predictor-based detect- Lorenzdataisknownto be chaotic, and therefore has known
ors in an attempt to determine which criterion is most suit- 8ssociated underlying dynamics. Noise was added as it was

able. The predictor detectors are compared with standardf€lt that this would more closely model a situation found in
detection strategies. practice, plus it makes the problem of capturing the under-

lying dynamics of the Lorenz signal more difficult [8].

The paper is structured as follows. In section 2 noisy
Lorenz data generation is described. In section 3 the de-
aection strategies used are explained. In section 4 single
pulse detection analysis using a Swerling | [10] target and
the noisy Lorenzclutter” is presented. Conclusions are
presented in section 5.

1. INTRODUCTION

Researchers at McMaster University in Canada have claime
that sea clutter is a chaotic process [1] and that nonlinear
predictor (NLP) networks can be used to improve the per-
formance of maritime surveillance radars [2, 3]. However,
criticisms of the measures used in [1] to categorise chaotic
behaviour have been levelled [4, 5] which have thus called 2. GENERATING NOISY LORENZ DATA

in to question the chaotic nature of sea clutter. Recent evid-

ence [6] has challenged the view that NLP's can improve The following coupled system of three nonlinear differential

maritime surveillance radar performance. equations [11],
Despite the uncertainty surrounding the chaotic nature p
of sea clutter, and its nonlinear predictability, the purpose z(t) = op(y(t) —2(t)) (1)
of this paper is to examine what the best design criterion is ddtt
fora NLP whichis to be used to detect targets against clutter y(t) = rrx(t) — y(t) — 2(t)z(t)
which is known to be chaotic. The reason for this investiga- dt
tion is that researchers at McMaster University [3] have ad- dz(t) = 2(t)y(t) - bre(t)
vocated designing the NLP so that it captures the underlying dt

dynamics [3, 7] of the chaotic clutter. However, recently [8] whereor, i, andb;, are dimensionless, describe the dy-
it has been found that capturing the underlying dynamics of P ;

) li A . istent with achieving the b tnamics of the Lorenz attractor. Fer,=10, b; = %,the
asignalis notnecessartly consistent with achieving the bes system behaves chaotically, whenever the Rayleigh number
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[9]. Equation (1) can be solved fai(t) using a4'" order the detection analysis involving the noisy Loréolutter” .
Runge-Kutta [12] technique with a suitable discrete step- In [8] it was shown that capturing a chaotic signal’s underly-
size to produce a discrete Lorenz time series. White Gaus-ing dynamics was not necessarily consistent with achieving
sian noise [12] was added to the Lorenz data, the signal tothe best MSE prediction performance. Specifically, it was
noise ratio (SNR), shown that a NRBFNP with an embedding dimensiioa (
number of input nodes) of 7, an embedding delay (lelay
, between each input node) of 3 samples, 400 kernels, and a
SNR = 101og;, |:o-s;gna1:| ) training length of 2000 gamples cquld be used.to success-
Hoise fully capture the underlying dynamics of the noisy Lorenz
data, whereas a NRBFNP with an embedding dimension of
wheres?_,.., is the variance of the signal of interest (in this 7, an embedding delay of 1 sample, 400 kernels, and a train-
case the Lorenz data), anfl .. is the variance of the noise,  ing length of 2000 samples was not able to successfully cap-
was 25dB. ture the underlying dynamics, but did achieve a better MSE
performance.
3. DETECTION STRATEGIES Detection analys_is was carried out u_sing the noisy Lorgnz
clutter, and a Swerling | target, for a signal to clutter ratio

A block diagram of a predictor detector is given in Figure (SCR) of -6.99dB, where the target is the signal, and the

1. A K-step ahead predictor (linear, Volterra series filter NOISy Lorenz data is the clutter. The following detectors
were used. In addition to the NRBFN predictor detectors

(NRBFNPD's), a linear predictor detector (LPD) with 30

Ty (1) -e(n) i?{lir(]:;y>DSC|5|on | taps, a VSF predictor detector (VSFPD) with an embedding
: - then targettpresent dimension of 10 and embedding delay of 1 sample, a CA-

A rsa%glgcajheadj else CFAR with a window of size 1, a FB-CA-CFAR with a win-
predictor then no target present dow of size 1 in the forward section and 1 in the backward

section, and a fixed threshold detector were all used. Note
_ ) that the sizes of the CFAR windows were found to be op-
Fig. 1. Predictor-detector. timal in terms of detection performance. A prediction step
of 1 sampleite. K=1) was used by each predictor. The fol-
lowing detection simulation parameters were common to all
the detectors.

(VSF) [6,7,13], or normalised radial basis function network
(NRBFN) [8,14]) was trained (for details on the training see
[8]), then clutter samples which were not used to train the ¢ Training data set length: 2000 samples.
predictor{z,(n)} were presented to the predictor through
a K-step delay. The clutter dafa:,,(n)} could consist of
clutter alone, or clutter plus target. To determine if a target ¢ Number of target samples: 35,000.
was present or not, the predictor eregr) was compared
with a threshold level;. If the predictor error was greater
than the threshold a target was declared to be present, and
it was less than the threshold level a target was not declare
to be present.

Two differenttypes of standard detectors [10] were used error (NMSE),
to compare with the predictor detectors. The two techniques
used were a fixed threshold detector, and a cell-averaging ( 1 Z )

e Non-training data set length: 35,000 samples.

The receiver operating curve (ROC) detection results for the
i@bove simulations are plotted in Figure 2. The prediction
qoerformance of the predictor detectors and CFAR detektors
are given in Table 1, in terms of normalised mean square

constant false alarm rate detector (CA-CFAR). In particular, NMSE = 10log,, | — > (@(n+K) - &(n +K))?
for the purposes of this paper, a distinction will be made 7 on=1

between a CA-CFAR with a sliding window before the test ©)
cell, and a forward-backward CA-CFAR (FB-CA-CFAR), wheres? is the variance of overY samples, K is the pre-
which has a sliding window either side of the test cell. diction step, which was set equal to 1 sample for this detec-
tion analysisz(n + K) is the actual sample to be predicted
4. SINGLE PULSE DETECTION AGAINST A attime stepr andi(n + K))? is the predictor’s estimate of
CHAOTIC CLUTTER BACKGROUND the actual sample to be predicted at time steg-rom the

. , . 1A CFAR can be considered as a crude predictor, and consequently a
The .NRBFN preghctors (NR.BFNP s) used in [8] for the  NmsE figure can be worked out for it, using the CFAR error values, on the
prediction analysis of the noisy Lorenz data were used for training and non-training data sets
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Fig. 2. Detection analysis using noisy Lorenz data for a
SCR of -6.99dB.

Predictor Training Non-training
NMSE [dB] | NMSE [dB]
NRBFNP,7=1 -23.63 -21.19
NRBFNP,7=3 -21.59 -18.70
VSFP -23.38 -21.79
LP -15.77 -15.52
FB-CA-CFAR -19.90 -19.92
CA-CFAR -11.02 -11.08

Table 1. Prediction NMSE performance for predictors on
noisy Lorenz data, wheredenotes embedding delay.

results in Figure 2, it can be seen that the NRBFNPD with

an embedding delay of 1 sample performed as well as, or
better than, the NRBFNPD with an embedding delay of 3

samples. Taking into account the prediction results in Table
1, the NRBFNPD with the better NMSE performed better

than the NRBFNPD which was able to capture the underly-
ing dynamics of the noisy Lorenz data. From this evidence,
given the choice between NMSE and capturing a signal’'s
underlying dynamics, the predictor with the better NMSE

should be incorporated into a predictor detector in favour of
the predictor which captured the dynamics.

The rule that a bettei.€. more negative) NMSE value
makes for a better predictor detector, or CFAR detector,
seems to apply in Figure 2, except for the case of the NRB-
FNPD with an embedding delay of 3 samples.(the net-

The reason for the poorer performance of the NRBFNPD,
with an embedding delay of 3 samples, can be seen by con-
sidering the predictor errors plotted in Figure 3. The reason
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Fig. 3. Predictor errors from the target detection analysis

work that managed to capture the underlying dynamics of @gainst a noisy Lorenz background: predictor errors for (a)
the noisy Lorenz data). This NRBFNPD managed to achieve@ NRBFNPD with an embedding dimension of 7 and an em-
a better non-training data set NMSE value than the LPD, bedding delay of 1 sample, (b) a NRBFNPD with an embed-
but for low P;, values the NRBFNPD with an embedding ding dimension of 7 and an embedding delay of 3 samples,
delay of 3 samples performed more poorly than the LPD. and (c) a LPD with 30 taps.



why the NRBFNPD with an embedding delay of 1 sample [5]
performed better than the NRBFNPD with an embedding
delay of 3 samples, and the LPD, is because it produced
smaller errors than the other predictor detectors, which al- [6]
lowed a better distinction to be made between error plus
target samples and error only samples. The LPD was able

to perform better than the NRBFNPD with an embedding
delay of 3 samples, due to the same reason. Although the
NRBFNPD with an embedding delay of 3 samples had a [7]
betteroverall NMSE value, it contained many error samples

that were larger than those of the LPD, which resulted in
poorer performance than the LPD, at I¢%,, values. [8]

5. CONCLUSIONS

To summarise the results in section 4, for the case of training [0l
a NLP for use in a NLPD, it would appear that the smallest
NMSE criterion would be preferred to the criterion of train- [10]
ing a NLP to capture a signal’s underlying dynamics, given
that the network which had learnt the underlying dynamics [11]
had a poorer NMSE than the network which had not learnt
the underlying dynamics. However, as in the case of the
NRBFNPD with an embedding delay of 3 samples, using [12]
NMSE alone as a guide to the performance of a predictor
detector can be deceiving.

In terms of processing chaotic signals, increasing the [13]
embedding delay has the effect ‘@pening out” the at-
tractor in state space, which reduces the likelihood that noise[l4]
will cause any vector to erroneously evolve (or jump) to the
wrong part of the attractor. Avoiding such erroneous evol-
ution eventualities results in correctly capturing the under-
lying dynamics of the chaotic signal in question. It would
appear that increasing the embedding delay of a NLP has
a negative impact on the performance of the correspond-
ing NLPD. Therefore, capturing the underlying dynamics
of chaotic clutter, and thus being able to reconstruct its at-
tractor in state space do not appear to be consistent with
designing the best NLPD from the evidence presented in
this paper.
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