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ABSTRACT overall subimage within the window and not only at the cen-

. . - tral pixel as it is in [4]. Thus, it makes an overlap of the es-
An algorithm for image noise-removal based on local adap- . : " r . : i
tive window sizefiltering is developed in this paper. Two timates in the neighboring windows and we obtain the mul

features to use into local spatial/transform-donfitering ~ UPI€ eStlgl_ateSJOl‘ teacgtpl_xetlhAlllof tthe atbofve estlrr?a'geslare
are suggested. Firdijtering is performed on images cor- 3V€raged in order to obtain théal estimate for each pixel.
rupted not only by additive white noise, but also by image- | nefilters presented in [4] and [7] are used in this paper
dependent (e.gfilm-grain noise) or multiplicative noise. 25 @ Starting “prototypefilter. We are going to equip it by

; ; . two additional features:
Second, used transforms are equipped with a varying adap- 1) Transforms are used with varying directional adaptive

tive window size obtained by the intersection of idance . ; . ; X
intervals (IC1) rule. Finally, we combine all estimates avail- S12& Windows. The intersection of ditience intervals (ICl)
rule is applied for a window size selection [8; 9]

able for each pixel from neighboring overlapping windows 2) The algorithms work on images corrupted not only

by weighted averaging these estimates. Comparison of then " ; ; : .
: ; ; ; y additive white noise, but also by image-dependent noise,
algorithm with the known techniques for noise removal from as well as by multiplicative noise.

images shows the advantage of the new algorithm, both qua Extensive experiments corm the expected improved

titatively and visually. performance of the proposditer for different noise mod-
els.
1. INTRODUCTION

Transform domain signal denoisiffigds applications in re- 2. FILTERING IN TRANSFORM DOMAIN
storation of different type of one and two dimensional sig-
nals. Depending on imaging systems different noise mod-
els were considered - starting from additive white noise,  y(¢, ) = (¢, 7) + e(i,§) = 2(¢,7) + z(4,5)"n(¢, ),
data-dependent (e.dilm-grain type) noise, to multiplica-
tive noise. Image processing in the transform domain rather o ) ) o
than in the spatial domain has certain advantages of incorWherez(é, j) is the noise-free image ana(z, j) is zero-
porating a priori knowledge on images into design of pro- mean noise with the varianee. _
cessing algorithms and in terms of computational expenses. _ Note, that in the case of different valuesothis model
The transfer from the spatial domain into the transform do- Will coincide with: an additive noise model = 0, an
main is especially useful if it is applied locally rather than image-dependent additive noise model< v < 1 (e.g.
globally. Having an excellent performance in suppressing afilm-grain noise, ify < v < 3), a multiplicative speckle
of the Gaussian noise, transform based methods work fairlynoise modely = 1. o _
well also in several applications where the error is neither ~ The main reason to malitering in a transform domain
white nor Gaussian [1]. These applications are noise reductather than in atime (spatial) domain is due to decorrelating
tion (denoising) of synthetic aperture radar (SAR) signals, Properties of some transforms. _
medical and geophysical signals, as well as removing block-  Letan orthogonal transform befitged by x NV matrix
ing and ringing artifacts from images of JPEG and wavelet H, H" H = I. The observation model (1) in the transform
decoded images [1, 2, 3]. domain and in matrix notation is of the form

Nonlinearfiltering in the wavelet transform domain was Y =X+ FE @)
introduced in terms of wavelet denoising by Donoho and ’
Johnstone [5] and has been extended by several authoravhere
In [1, 6] translation invariant wavelet denoising algorithms T T
we[re irltroduced and tested on different one dimensional Y =H"yH X =H"vH, I =H"el.

signals and SAR images, respectively. Thefiltering into the transform domain can be done, say,

In [7] the local average transform domain denoising was py the hard shrinkage (rejectifidtering) defined as [5]
presented. The difference between thier and the one

in [4] is that the nonlinear mofication of the transform co- V(i,5) = Y (2,3), if [Y(2,5)] = Bn, 3)
efficients within a sliding window gives the estimate for the )= 0, otherwise, )

Consider an observed noisy imag, j) modeled as



where 3,, isathreshold of thefilter.

Inversion of the transform gives the estimates of the sig-

nals as
~ T
y=HYH . 4)

In the local transform basefiltering the procedure is
applied not to the transform cdefients of the entire image
but to a block of the image in slidinfiitering fashion (run-
ning, overlapping blocks). Itis shown in [7] that keeping all
filtered outputs for all windows improves the performance
of de-noising if we combine all available estimates for each
pixel coming from different windows it belongs to.

3. VARYING WINDOW SIZE SELECTION

In this section we present a médation of ICI rule [8, 9,

10] corresponding to the observation model (1). Let an es-

timate of the signal is given as the sample average

En(Ed) = 5 3 Pl /a4, + )

ur,u2

®)

with a normalized mask > 0, 75 3_,,, ., p(u1/h,uz/h) =
1, whereh is a scale (size) parameter of the mask. Then,
the estimation error i8(z,j) = x(¢,j) — &4(¢, 7). It can
be shown that for the estimation bigs{e(i, j)}| < Ch =
wi j, C = A-max; j{| Zx(i,j)| —|—|8%:Jc(i,j)|}7 whereA is

In what follows we use the inequalities (8) corresponding
to differenth in order to test the hypothesis< »* and to
find the value of: close toh*. According to (8) determine

a sequence of the cdence intervaldD(k) of the biased
estimates as follows

Ty (4,9) + T - stds j (b )],

wherel’ = 1+ x;_,/2 IS a threshold of the cdidence
interval. Then the inequality (8) is of the form

j"hk(ivj)eD(k)? )

and we can conclude from (7) that as long as the inequality
h < h*holds forh = hy, 1 < k < r,all the intervalsD(k),
1 < k < r, have a point in common, namely(i, 7).
The following is the/ C'I statistic, which is used in order
to tests the very existence of this common point and in order
to obtain the adaptive window size value:
Consider the intersection of the intervals D(k), 1 <
k < r, with increasing r, and let »+ be the largest of those
r for which the intervals D(k), 1 < k < r, have a point in
common. Thisr defines the adaptive window size and the
adaptive mean estimate as follows
.’f}+(l,j) :'i'hr+(z7j) (10)
Thefollowing al gorithm implementsthe procedure (10).
Determine the sequence of the upper and lower bounds of

a constant, and the standard deviation of the error is of thethe confidence intervals D(j) asfollows

form StdiJ‘ = BU/h,B2 # Zul s |.’L'(Z.+U1,j+U2)|2ry.
Then we have for the mean squared erfdiq~):

MSE < wi; + std} ; = C*h* + B** [h*.

Let us assume thd? at least locally does not depend bn
Then, the minimum of\/ SE on h is achieved ab = h*,

h* =~ /82 It can be vefied that the ratio of the bias
to the standard deviation of the error is constant/foe
h*, w;j/std; ; = 1.This h* provides the optimal balance
between the bias and the random error of estimation.

It can be seen in this analysis that

Wi, j < std forh < h*. (6)

Thenle(z,7)| < wi; + |&.;], where asymptotically the
random tern; ; is Gaussian and with the probability=
1 — a the following inequality holds

1,5

)

wherex;_ /2 is (1 — «/2) — th quantile of the standard
Gaussian distribution. Now we introducédinite set of in-
creasing window sized! = {h; < ho < ... < hy},
starting with quite a smalt;.

Then, according to (6) the inequality (7) can be weak-
ened forh < h* to

le(i,7)] < wij + X1—ay25td; j,

le(2, 7)] < (1 4+ X1-ay2)8td; ;- 8)

T (1,5) + T - stdi j (i),
Lk = Lf?hk (Z,j) -I- StdiJ (hk)

Let

Ek+1 = max[ik, Lk+1], (11)

Upr = min[Uy,, Ugi1],
k=1,2,...,J, Li=1L4, U, =0

then the optimal window length comes for the largest r,

for which theinequalities L, < U, k < r, is till satisfied.
Thisr* isthe largest of those % for which the confidence
intervals D (k) have apoint in common as discussed above.

This IC'I window size sel ection procedure requires knowl-
edge of the estimatey, (¢,7) and its local variance only.
The procedure described above is repeated for every pixel

i, j.
4. ALGORITHMSAND EXPERIMENTS

The developed algorithm comprises two parts. Titst part

is used for an image segmentation. This segmentation as-
sumes thatthe ICl rule is used for every pixelin ordeind

the adaptive sizes of four directional rectangular windows as
shown in Figure 1. As aresult every pixel can be an entry of
many different estimates obtained for varying size windows



Figure 1. Four quadrant windows 11,111 and IV used for
directional window size selection by the ICl rule,

with different centers. The second part assumes the DC'T’
transform filtering for every of these adaptive size windows.
All obtained estimates are accumulated in a buffer and aver-
aged in order to produce tlimal estimate for every pixel.
Experiments were performed on the testimages "House”
and "Cameraman” (8 bit gray-scals6 x 256 image) cor-
rupted by different types of noise. The results are compared
with the wavelet transform based (Haar, Symmlet,figui
Translation Invariant) and Kudilters. The new algorithm
showed a valuable SNR improvement (more than 4-5 dB)
for most cases. Some illustrative images are given in Figure
2. Figure 2a,b show the original and noisy image (additive
Gaussian noise), while the DCT estimate described above
is given in Figure 2d. Thé&M SE values show a valuable [
original noise reduction. The visual quality is quite accept-
able for this level of the noise. In Figure 2c we show as an
intermediate results thHétering obtained from the LPA (5).
The estimates obtained for four adaptive varying windows
are averaged with the weights reciprocal to the variances of
these estimates [10]. Figure 3 shows the varying adaptive
window sizes obtained respectively for the windows 111,111
and IV (Figure 1,h; = 2* k = 0,1,...,6). Here black
and white correspond respectively to small and large win-
dow sizes. Actually the adaptive window sizes delineate
contours of the image and demonstrate a very reasonable
performance of the ICI rule as a window size selector.
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True image

Figure 2: @) Trueimage, b) Noisy image, c) L P A denoising, d) DCT denoisng with /CI adaptive window sizes.
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Figure 3: Adaptive window sizes obtained by /C'T with I'=2.5.



