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Abstract

In this paper, we present a new technique to solve array pattern
synthesis problems by using semide�nite programming. We �rst
formulate (or reformulate) the array design problems into semidef-
inite programming problems, and then use the recently developed
eÆcient numerical algorithms and software to compute the nu-
merical solution of antenna array weights. Using this approach,
we can directly solve not only the standard synthesis problems
for nonuniform arrays, but also the synthesis problems for arrays
having power restrictions and uncertainties. Numerical examples
are presented to illustrate our approach.

I. Introduction

Antenna arrays have many applications in signal pro-
cessing and communications. A basic problem of an-
tenna arrays is to arrange array weights to obtain higher
directive gain, or spatially �ltering signals that do not
come from the desired direction.

For uniform linear array, a celebrated solution was given
by Dolph [1] using the Chebyshev polynomial. The de-
signed pattern, which is known as the Dolph-Chebyshev
pattern, has the property of the minimum sidelobe level
with a given mainlobe width.

However for arbitrary arrays, the Dolph-Chebyshev
method can not be applied. To optimally design weights
for arrays containing nonuniformly spaced or nonequal
elements, or for arrays with nonlinear shape, several al-
gorithms were developed by formulating synthesis prob-
lems as quadratic programming problems (see for exam-
ple [2, 3, 4]), where the sum of the squared synthesis
error between the synthesized pattern and the desired
pattern is minimized.

Another approach for array pattern synthesis is based
on the concept of arti�cial interference. Applying the
adaptive array theory, [5, 6] design antenna arrays by
maximizing the signal-interference-noise-ratio (SINR).

Since in many cases we are indeed interested in min-
imizing the peaks of the synthesis error, one step of
optimization may not give a pattern of desired qual-
ity. In [2, 7], array synthesis algorithms to minimize
a quadratic objective function with recursively updated
linear constraints were proposed. Another way to mini-
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mize the peaks of the synthesis error is to add a weight-
ing function in the objective function or recursively ad-
justing the interference-noise-ratio (INR) [6]. In [8], a
numerically more eÆcient algorithm by using recursive
least square method was proposed.

By observing that the array pattern synthesis problem
is indeed a convex optimization problem, [9] proposed
to solve the single look direction array pattern synthesis
problem using the interior point method.

In this paper, we present a new approach to directly
solve the array pattern synthesis problems. We �rst
formulate (or reformulate) the array pattern synthesis
problems as a special class of convex optimization prob-
lems | the semide�nite programming (SDP) problems
or linear objective minimization problems with linear
matrix inequality (LMI) constraints. In general, these
LMI problems can not be solved analytically. However,
they can be numerically solved very eÆciently by using
the recently developed numerical algorithms and soft-
ware. Therefore, the \solution" of the array synthesis
problems presented in this paper will be linear objec-
tive optimization problems with linear matrix inequali-
ties constraints. Here the \solution" is in the sense that
they can be directly solved using the optimization soft-
ware, for example the Matlab LMI Toolbox [10].

In comparison to the conventional methods, the SDP
approach leads to a direct optimal solution to the array
pattern synthesis problem. In addition, this approach
can also solve the synthesis problems when the arrays
have additional constraints, such as power restrictions or
uncertainties. Here we note that the semide�nite pro-
gramming techniques are applied for statistically opti-
mal beam forming problems in [11].

Our notations are standard. P > 0 (P � 0) means that
P is a real, symmetric, positive-de�nite (semi-positive-
de�nite) matrix. For brevity, we omit all proofs and only
show one numerical example; a more complete version
of the paper can be obtained from the authors via email
fanw@cig.mot.com.

II. Optimal Array Pattern Synthesis

A. Problem setup

Consider a linear array with N antennas. Assuming that
the arriving signal is a narrow band signal, we denote the



steering vector as

V (�) =
�
f1(�)e

j�1(�) � � � fN(�)e
j�N (�)

�T
;

where fi(�) is the element pattern of the i-th antenna,
� is the angle of the arrival signal. �i(�) is the phase
delay due to propagation, and for a linear array can be
represented as

�i(�) =
2�dk sin �

�
; (1)

where � is the wave length of the transmitted signal, dk
is the position of the k-th element. Then the output of
the antenna array is represented as

P (�) =

NX
i=1

wifi(�)e
j�i(�) =W TV (�); (2)

where W = [w1 � � � wN ]
T 2 C

N is the complex weight
vector of the array.

For the antenna array described above, an array pattern
synthesis problem can be stated as

For given �(�) > 0, �nd if it exists,
a complex weight vector W , such that
jP (�) � Pd(�)j � �(�);8� 2 �;

(3)

where Pd(�) is the desired pattern, and � is the set of
arrival angles that we are of interest. Normally, � is a
\dense set" of the interval [�90; 90]. Thus we require
the synthesized pattern approach to the desired pattern
in the whole range of arrival angles from �90Æ to 90Æ.

�(�) is the allowed synthesis error at the arrival angle
�. Let �(�) = r(�)�, where r(�) is a prede�ned ratio
of angular response of antenna array at di�erent arrival
angles. For example, r(�) can be the ratio of the magni-
tude of the ripples in the main beam and the magnitude
of the ripples in the side lobe [8]. By minimizing the
level of the synthesis error � in (3), we can achieve the
minimax pattern.

Since we do not have any restriction on the steering vec-
tor V (�), the problem we consider is a general array pat-
tern synthesis problem, where di�erent array elements
can have di�erent element patterns, and the array can
have nonuniform spacing between elements.

By observing the convexity of the array pattern synthesis
problems, Lebret and Boyd proposed to solve the single
look direction array pattern synthesis problems using the
interior point method [9]. With the same observation,
we formulate the array pattern synthesis problems into
linear matrix inequality (LMI) problems, and solve them
using the recently developed software and algorithms. In
comparing with the conventional recursive methods, our
method has the following advantages:

1. Our method is based on semide�nite programming.
Therefore we can take advantage of the recently de-
veloped algorithms and software and the problem can
be numerically solved eÆciently;

2. Since most LMI algorithms (software) solve the origi-
nal optimization problem and its dual problem simul-
taneously, our method can give a determined answer

for the \infeasibility" of the problem (3), i.e., for the

given �(�), problem (3) is infeasible for anyW 2 CN ;

3. By using the semide�nite programming approach, we
can have a \guaranteed accuracy1" of the optimal so-
lution of the array weights. The optimality and accu-
racy of the solutions by using conventional recursive
methods normally can not be guaranteed.

4. Our method can not only solve the basic array pat-
tern synthesis problem (3), but also design optimal
array patterns when the array is power limited or has
uncertainties.

B. Array pattern synthesis using LMI approach

Theorem 2.1 For a given weight vector W 2 C
N , the

condition
jP (�)� Pd(�)j

2 � �(�) (4)

holds if and only if the following linear matrix inequality
holds�
�(�) + 2Ŵ TU(�)R(�) �R(�)TR(�) Ŵ TU(�)

U(�)T Ŵ I

�
� 0

(5)

where Ŵ is the optimization variable and

Ŵ =

�
WR

WI

�
; WR = RefWg; WI = ImfWg; (6a)

U(�) =

�
VR(�) VI (�);
�VI(�) VR(�)

�
; R(�) =

�
Pd;R(�)
Pd;I(�)

�
;

(6b)
VR(�) = RefV (�)g; VI(�) = ImfV (�)g; (6c)

Pd;R(�) = RefPd(�)g; Pd;I(�) = ImfPd(�)g: (6d)

Theorem 2.1 is a main result of this paper. With The-
orem 2.1, we can formulate the array pattern synthesis
problem (3) as an LMI feasibility problem:

For given �(�), �nd a weight factor W ,
such that LMI (5) holds for all � 2 �. (7)

This problem can be solved eÆciently by using the stan-
dard numerical algorithms, for example the Matlab LMI
Toolbox [10]. Since the solver of LMI is based on the
primal-dual interior point method, it can give not only
a feasible solution when (7) is feasible for the given
�(�), but also a determined answer for the infeasibility

when (7) is not feasible for any W 2 CN with the given
�(�).

III. Specific problems

In Section II, we have derived the basic LMI synthesis
conditions for arrays whose elements are nonuniformly
spaced, or the element patterns are nonequal. In this
section, we consider several speci�c design problems for
such arrays:

1. Minimize the error between the synthesized pattern
and the desired pattern, or minimax array pattern
synthesis problem;
1Since the solver of LMI problems are based on the primal-dual

method, the relative accuracy required on the optimal value of the
objective can be guaranteed.



2. Design optimal arrays with power restriction;

3. Design worst case performance guaranteed patterns
for arrays having uncertainties, or robust array pat-
tern synthesis problem.

We will show that these problems can also be formulated
as semide�nite programming problems and solved using
the standard algorithms.

A. Minimax array pattern synthesis

In some cases, we wish to minimize the sidelobe level.
More generally, we may wish to minimize the maximum
synthesis error between the synthesized pattern and the
desired pattern, so that the synthesized pattern is as
close to the desired pattern as possible. This problem
can be easily formulated as a convex optimization prob-
lem with LMI constraints:

minimize �; subject to LMI (5) for all � 2 �.
(8)

Here we recall that �(�) = r(�)�. In the following, we
assume r(�) = 1 for the simplicity of the description.
The results established can be easily extended to general
r(�).

B. Array pattern synthesis with power restriction on
weight vector

Because of the power restriction of the array net-
work [12], we may have an addition condition on the
weight vector that

NX
i=1

jwij
2 � 
; (9)

where 
 > 0 is the restriction of the power. Note that

kWk2 =
PN

i=1 jwij
2. This power restriction (9) can be

represented as the following equivalent LMI condition�

 Ŵ T

Ŵ I

�
� 0; (10)

where Ŵ is de�ned in (6).

To synthesize a array pattern satisfying the power re-
striction (10), we only need to solve the following LMI
problem:

For a given � and the power restriction 
, �nd W ,
such that LMIs (5) and (10) hold for all � 2 �.

(11)

C. Array pattern synthesis with output power restriction

In the array pattern synthesis problem (3), the perfor-
mance requirement is on each arrival angle in the set �.
In some cases, we may have a requirement on the array
output power within a range of arrival angles, i.e.,X

�2�

jP (�)j2 � �; (12)

where � = f�1; � � � ; �mg.

De�ne

V = [ V (�1) � � � V (�m) ] ;U =

�
RefVg ImfVg
�ImfVg RefVg

�
:

Then (12) is equivalent to W TVVTW � �. It is further
equivalent to an LMI condition

�
�I Ŵ TU

UT Ŵ I

�
� 0: (13)

We note that condition (13) can be combined with the
results in Section III-A and Section III-B if we have both
the requirement (4) on the arrival angles in � and the
requirement (12) on the arrival angles in �.

D. Robust array pattern synthesis

D.1 Element gain uncertainty

Due to the nonlinearity and uncertainties of the am-
pli�ers in the array, the array element may su�er from
uncertainties in ampli�cation gain. We consider the fol-
lowing array with gain uncertainties:

VÆ(�) =
�
(1 + Æ)f1(�)e

j�1(�) : : : fN (�)e
j�N (�)

�T
;

(14)
where Æ is a uncertainty and satis�es jÆj � �. � is a
known bound.

The robust array pattern requires

max
jÆj��

jPÆ(�)� Pd(�)j
2 � �; (15)

for all � in �, where PÆ(�) =W TVÆ(�).

For an array with uncertain element described in (14),
we have the following result on the robust pattern syn-
thesis.

Theorem 3.1 For a given weight vector W 2 C
N , the

condition (15) holds if and only if the following linear
matrix inequalities hold

�
�+ 2Ŵ TU(�)R(�) �R(�)TR(�) Ŵ TU(�)

U(�)T Ŵ I

�
� 0;

(16a)�
�+ 2Ŵ TU(�)R(�) �R(�)TR(�) Ŵ TU(�)

U(�)T Ŵ I

�
� 0;

(16b)

where Ŵ is the optimization variable and

U(�) =

�
V R(�) V I(�)
�V I (�) V R(�)

�
; U(�) =

h
V
R
(�) V

I
(�)

�V
I
(�) V

R
(�)

i
;

and

V R(�) = RefV�(�)g; V I(�) = ImfV�(�)g;
V R(�) = RefV��(�)g; V I(�) = ImfV��(�)g;

Ŵ and R(�) are de�ned in (6).

D.2 Element phase uncertainties

We now consider phase uncertainties in the steering vec-
tor, which may due to phase uncertainties in the propa-
gation channel or uncertain positions of array elements.

Again, we assume that the uncertainties lie in the �rst
array element, and the steering vector of the array can



be represented as

V (�) =
�
f1(�)e

j�1(�)+j : : : fN(�)e
j�N (�)

�T
;

(17)
where  is a phase uncertainty and satis�es j j � �. �
is a known bound.

The robust array requires

max
j j��

jP (�)� Pd(�)j
2 � �; (18)

for all � in �, where P (�) =W TV (�).

Following the same line as Theorem 3.1, we have the
following result.

Theorem 3.2 For a given weight vector W 2 C
N , the

condition (18) holds if the following linear matrix in-
equalities hold for i = 1; 2; 3; 4

�
�+ 2Ŵ TUi(�)R(�) �R(�)�R(�) Ŵ TUi(�)

Ui(�)
T Ŵ I

�
� 0;

(19)

where Ŵ is the optimization variable and

Ui(�) =

�
VR;i(�) VI;i(�)
�VI;i(�) VR;i(�)

�
;

and

VR;i(�) = RefVi(�)g; VI;i(�) = ImfVi(�)g;

Vi(�) =
�
f1(�)e

j�1(�)Ki � � � fN(�)e
j�N (�)

�T
;

K1 = ej� ;K2 = e�j� ;K3 = 1 + j sin �;K4 = 1� j sin �;
(20)

Ŵ and R(�) are de�ned in (6).

IV. Numerical Examples

In this section, we present a numerical examples to il-
lustrate the algorithms proposed in this paper.

Consider a non uniformly spaced power restricted 41-
element array from [8]. Because of the power limitation,
we have a restriction on the weight vector

41X
i=1

jwij
2 � C: (21)

The desired array pattern has a 
ap-top main beam.
The region j�j � 20Æ corresponds to the main beam,
or pass band; the region j�j � 25Æ corresponds to the
sidelobe, or stopping band.

We �rst relax the power restriction (21). The optimized
array pattern has a side lobe of about -30dB, see Fig-
ure 1. However, to achieve such a array pattern, the
power of the weight vector is as high as 9:9005 � 108.
Even though this design has the lowest sidelobe, it is
not realizable due to its low radiation eÆciency.

To design an array with high radiation eÆciency, we in-
clude the power restriction condition (21). We observed
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Fig. 1. Beam pattern with no power restriction

from Figure 2 that as a trade of tighter and tighter power
restriction, the level of the error between the synthe-
sized pattern and the desired pattern becomes larger
and larger. With a power limitation of

P41
i=1 jwij

2 � 10,
the best array pattern has a sidelobe of -24.7 dB.
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Fig. 2. Relation between the power restriction and the synthesis
error

References

[1] C. L. Dolph, \A current distribution for broadside arrays
which optimizes the relationship between beamwidth and
sidelobe level," Proc. IRE, vol. 34, pp. 335{348, June 1946.

[2] C.-Y. Tseng and L. J. GriÆths, \A simple algorithm to
achieve desired patterns for arbitrary arrays," IEEE Trans.
Signal Processing, vol. 40, no. 11, pp. 2737{2746, Nov. 1992.

[3] B. P. Ng, M. H. Er, and C. Kot, \A 
exible array synthesis
method using quadratic programming," IEEE Trans. Anten-
nas Propagat., vol. 41, no. 11, pp. 1541{1550, Nov. 1993.

[4] L. Wu and A. Zielinski, \Equivalent linear array approach to
array pattern synthesis," IEEE J. Ocean Eng., vol. 18, no. 1,
pp. 6{14, Jan. 1993.

[5] J. C. Sureau and K. J. Keeping, \Sidelobe control in cylin-
drical arrays," IEEE Trans. Antennas Propagat., vol. 30, no.
9, pp. 1027{1031, Sep. 1982.

[6] C. A. Olen and R. T. Compton, \A numerical pattern synthe-
sis algorithm for arrays," IEEE Trans. Antennas Propagat.,
vol. 38, no. 10, pp. 1666{1676, Oct. 1990.

[7] M. Er, \Linear antenna array pattern synthesis with pre-
scribed broad nulls," IEEE Trans. Antennas Propagat., vol.
38, no. 9, pp. 1496{1498, Sep. 1990.

[8] F. Wang, R. Yang, and C. Frank, \A new algorithm for an-
tenna array pattern synthesis using recursive least square
method," Submitted to the IEEE Trans. Antennas Propa-
gat., May, 2000.

[9] H. Lebret and S. Boyd, \Antenna array pattern synthesis via
convex optimization," IEEE Trans. Signal Processing, vol.
45, no. 3, pp. 526{532, Mar. 1997.

[10] P. Gahinet and A. Nemirovskii, The LMI Control Toolbox,
The MathWorks, Inc., 1995.

[11] M. Bengtsson and B. Ottersten, \Optimal downlink beam-
forming using semide�nite optimization," in Proc. Annual
Allerton Conf. on Communication, Control and Computing,
pp. 987{996, (Allerton, IL), Sep. 1999.

[12] K. Yu, \Adaptive antenna array pattern synthesis using re-
cursive minimum-norm solution with constraint selection and
phase optimization," in Proc. IEEE Conf. on Acoustics,
Speech, and Signal Processing, vol. 4, pp. 19{22, Apr. 1994.


