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ABSTRACT
Noise reduction has been a traditional problem in image
processing. Recent wavelet thresholding based denoising
methods proved promising, since they are capable of
suppressing noise while maintaining the high frequency
signal details. However, the local space-scale information
of the image is not adaptively considered by standard
wavelet thresholding methods. In this paper, a new type of
thresholding neural networks (TNN) is presented with a
new class of smooth nonlinear thresholding functions
being the activation function. Unlike the standard soft-
thresholding function, these new nonlinear thresholding
functions are infinitely differentiable. Then a new
nonlinear 2-D space-scale adaptive filtering method based
on the wavelet TNN is presented for noise reduction in
images. The numerical results indicate that the new
method outperforms the Wiener filter and the standard
wavelet thresholding denoising method in both peak-
signal-to-noise-ratio (PSNR) and visual effect.

1. INTRODUCTION

Noise reduction has been a traditional problem in image
processing. Recent wavelet thresholding based denoising
methods proved promising [1-4], since they are capable of
suppressing noise while maintaining the high frequency
signal details. However, the local space-scale information
of the image is not adaptively considered by standard
wavelet thresholding methods. In standard wavelet
thresholding based noise reduction methods [3,4], the
threshold at certain scale is a constant for all wavelet
coefficients at this scale. A major difficulty in achieving
adaptive algorithm using wavelet thresholding methods is
that the soft-thresholding function is a piece-wise function
and does not have any high order derivatives. In this
paper, first a new type of thresholding neural networks is
presented and a new class of smooth nonlinear
thresholding functions is developed as the activation
function. Unlike the standard soft-thresholding function,
these new nonlinear thresholding functions are
differentiable. Then a new nonlinear 2-D adaptive filtering

method based on wavelet thresholding neural network is
presented for space-scale adaptive noise reduction in
images. The numerical results indicate that the new
method outperforms the Wiener filter and the standard
wavelet thresholding denoising method in both peak-
signal-to-noise-ratio (PSNR) and visual effect.

2. THRESHOLDING NEURAL NETWORK
2.1 Thresholding Neural Network Structure
We construct a type of thresholding neural network (TNN)
to perform the thresholding in transform domain to
achieve noise reduction. The structure of the TNN is
shown in Fig. 1. The input of the TNN is noise corrupted
signal samples yi=xi+ni, i=0,…,N-1, where x is the true
signal and n is additive noise. The transform in TNNs can
be any linear orthogonal transform. For a specific class of
signal, the appropriate linear transform may be selected to
concentrate signal energy versus noise. By thresholding,
the signal energy may be kept while the noise is
suppressed. Here the thresholding function η(x,t) is
employed as nonlinear activation functions of the neural
network. The inverse transform is employed to recover the
signal from the noise-reduced coefficients iv̂  in transform
domain.
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Fig. 1. Thresholding neural networks
Since many signals have some regularities and wavelet
transform is a very good tool to efficiently represent such



characteristics of the signal, discrete wavelet transform
(DWT) [5] is often a suitable linear orthogonal transform
in TNNs. Note that the TNN is different from the
conventional multilayer neural network. In TNNs, a fixed
linear transform is used and the nonlinear activation
function is adaptive. It is possible to change the fixed
linear transform to an adaptive linear transform and then
the conventional multilayer neural network techniques can
be incorporated. This will be a meaningful exploration we
are going to pursue in the future.

2.2 A New Class of Differentiable Thresholding
Functions

Most learning algorithms of neural network employ the
gradients and higher derivatives of the network activation
function [6]. It is desirable that the activation function has
high-order derivatives so that the neural network has better
numerical properties and various gradient-based learning
algorithms can be developed. However, the standard soft-
thresholding function is only weakly differentiated and
does not have any high-order derivative. The author’s
previous work presented a new type of soft-thresholding
functions which has second order weak derivatives and
proved to be useful [2]. Here we present a new type of
smooth soft-thresholding, which is infinitely differentiable
and can keep the good properties of the standard soft-
thresholding, as follows.
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Fig. 2. Thresholding functions ηλ(x,t)

Obviously, ηλ(x,t) has all higher order derivatives for λ>0.
Note that when λ=0, ηλ(x,t) is just the standard soft
thresholding function [3] ηs(x,t)=sgn(x)(|x|-t)+. The
standard soft-thresholding function (λ=0) and the new
functions are shown in Fig. 2. The parameter λ determines
the degree of the thresholding effect and the adjustability
of the adaptive algorithm based on the function (amplitude
of derivatives).

3. SPACE-SCALE ADAPTIVE 2-D NOISE
REDUCTION BASED ON TNN

3.1 Space-scale Data Stream Preparation
In the new 2-D adaptive noise reduction method, the 2-D
DWT is adopted as the linear transform in TNN and the
noise corrupted image y is the input of the TNN. To
achieve space-scale adaptive noise reduction, we need to
prepare the 1-D coefficient data stream which contains the
space-scale information of 2-D images. This is somewhat
similar to the “zigzag” arrangement of the DCT (Discrete
Cosine Transform) coefficients in image coding
applications. In this data preparation step, the 2-D DWT
coefficients are rearranged as a 1-D coefficient series in
spatial order so that the adjacent samples represent the
same local areas in the original image. An example of the
rearrangement of an 8×8 transformed image is shown in
Fig. 3, which will be referred to as a 1-D space-scale data
stream. Note that [5] the DWT of an image consists of
four frequency channels: HH, HL, LH and LL. “H”
represents high frequency channel and “L” represents low
frequency channel. The first letter represents the
horizontal direction and the second letter represents the
vertical direction. The LL part at each scale is
decomposed recursively, as illustrated in Fig. 3 (a). Each
number in Fig. 3(b) represents the spatial order of the 2-D
coefficient at that position corresponding to Fig. 3(a).
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Fig. 3. Data preparation of the image

3.2 Learning Algorithm for Thresholding Neural
Network
Let ui in Fig. 1 denote the space-scale data stream of the 2-
D DWT coefficients of the input noisy image y and
ui=vi+zi, i=0,…,N-1, in which vi is the space-scale data
stream of the 2-D DWT coefficients of the true image and
zi is additive white Gaussian noise in the transform
domain. Our objective is to obtain the estimate iv̂  of the
true image DWT coefficients vi, which minimize the MSE
(Mean Square Error) risk
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In the new adaptive noise reduction scheme, the parameter
t(i) is adaptively adjusted for the nonlinear thresholding
function ηλ(x,t) to minimize the MSE, where t denotes



vector [t1, t2,…,tM]T and tm is the threshold at wavelet
channel m. In practice, since the original image x is usually
unknown, its DWT coefficients vi cannot be used as
reference to estimate the risk J(t). Therefore, a practical
reference is adopted: two noise corrupted signals y and y'
are obtained from the same image x plus uncorrelated
noise n and n', and y' is used as the reference. This is
reasonable since in some applications, we may have an
array of sensors and obtain more than one corrupted
version of the signal. For example, in adaptive echo
cancellation applications, two measurements for the same
source signal are commonly used [7]. It can be proved that
using such noisy reference signal leads to the same
optimum threshold as using the true signal [1].

We use a gradient-based LMS (Least Mean Square)
stochastic adaptive learning algorithm [6,7] for the TNN
to track local changes within the image and take advantage
of the time-varying local estimation error, i.e., the
threshold parameter t at position i is adjusted by
∆t(i)=αααα(i)⋅∂ iv̂ /∂t⋅εi, i=1,…,N, where the instantaneous
error iii vv ′−= ˆε , αααα(i) is a learning parameter and v'i is the
space-scale data stream of the 2-D DWT coefficients of
the reference image y'. The threshold parameter t is
dependent on not only different channels in transform
domain but also spatial position, i.e., it is fully space-scale
adaptive.

4. EXAMPLES
The 256×256 “cameraman” image is used as a test image
to illustrate the new method based on the TNN. The
original clean image is shown in Fig. 4(a). Two noisy
images are generated with additive i.i.d. Gaussian noise
with same noise variance. One of them is used as a
reference image y'. The Daubechies 8-tap least
asymmetrical wavelet filters are used. The largest scale of
the two-dimensional DWT is set to be 3 in the
experiments. The new soft-thresholding function ηλ(x,t)
with λ=0.01 is used. The algorithm is different noise
variances. The peak-signal-to-noise-ratio (PSNR) results
are shown in Table 1. The first column is the original
PSNRs of noisy images. The new space-scale adaptive
image denoising method is denoted as “TNN” in the table.
For comparison, Table 1 also shows the results of the non-
adaptive conventional wavelet denoising schemes. They
are calculated using functions provided in Matlab Wavelet
Toolbox. The “VisuShrink” is the universal soft-
thresholding denoising technique [3]. The column
“Wiener” represents the denoising results by Wiener
filtering, which is the optimal solution of the linear
filtering technique. As can be seen, the TNN based space-
scale adaptive image denoising has the best performance
in terms of PSNR improvement, especially when the
PSNR of the original noisy image is high. This can be

expected since the amplitudes of the few coefficients
representing the signal in transform domain are much
higher than those coefficients representing the noise, and
then more signal energy can be preserved when cutting off
all the coefficients with a threshold.

Noisy VisuShrink Wiener TNN
 20.0159  20.4768  26.2899 26.6423
 25.0290  22.4583  29.1181 29.9728
 30.0057  24.6496  32.4476 33.7289
 34.9942  26.7662  36.3116 37.8609
 39.9867  28.8212  40.6440 41.9908
Table 1. The PSNRs (dB) of different denoising methods.

Fig. 4(b) shows the noisy image with PSNR=20dB (the
first row in Table 1). The denoised images using different
methods are shown in Fig. 4(c)-(e). Apparently, the TNN
based space-scale adaptive denoising method gives the
best visual result as well as PSNR improvement.

5. CONCLUSION
In this paper, we presented a new type of thresholding
neural network (TNN) structure for adaptive noise
reduction, which combines the linear filtering and
thresholding methods. We created a new type of soft and
hard thresholding functions to serve as the activation
function of TNNs. Unlike the standard thresholding
functions, the new thresholding functions are infinitely
differentiable. A new practical 2-D space-scale adaptive
noise reduction method based on TNN was presented.
Using the instantaneous error of the TNN, a gradient-
based LMS (Least Mean Square) stochastic adaptive
learning algorithm is employed in TNN. The learning
algorithm proved to be efficient and effective. Numerical
examples are given for different noise reduction
algorithms including the conventional wavelet
thresholding algorithms and linear filtering method. It is
shown that the TNN based space-scale adaptive noise
reduction algorithm exhibits much superior performance in
both PSNR and visual effect.

Further investigations proved that under ideal
conditions, the stochastic learning algorithm converges to
the optimal solution of the TNN in certain statistical sense.
It is also shown that by using the TNN and the new
thresholding functions, many effective learning algorithms
can be developed for various applications [8].
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Fig. 4. Test images


