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ABSTRACT

This paperpresentsresultson usingadvanceddominocir-
cuit designtechniquesto implementa CORDICprocessor.
Skew-tolerantdomino,enhancedprechargedcontention,non-
blockingdominoandpulsedresetdominocircuit techniques
areexplainedandappliedto theimplementationof thisfunc-
tional unit. For comparisonpurposes,a baselinedesignus-
ing standardtwo-phasedomino with intermediatelatches
is alsodeveloped.Simulationresultsshow thatsignificant
throughputimprovementis possibleusingtheadvancedcir-
cuit techniques,with thepulsedresetstylehaving thehigh-
est speed. On the other hand,theseapproachesresult in
increasedpowerdissipation.

1. INTRODUCTION

CORDICalgorithmshave beenwidely appliedin many sig-
nalprocessingapplications,includingmatrixeigenvalueand
singularvaluedecompositioncalculations.In many of these
applications,attainingthehighestpossiblethroughputis the
primarydesigngoal.Thekey computationsconsistof anit-
erativeseriesof shiftsandadditionsor subtractions.Signed
digit approachesarewell matchedto this application,since
the iterative calculationscanbe donein a carry-save man-
ner. In this case,onealsoneedsbinary to signeddigit and
signeddigit to binaryconvertersat thebeginningandendof
theiterative loop.

In thispaper, wewill applyseveralrecentadvancements
in dominoCMOScircuit designto achieve very high speed
operationin a CORDIC angleunit [1], [2]. Specifically,
we will considerthefollowing designstyles:skew-tolerant
domino[3], [4], [5] with enhancedprechargecontention[6],
non-blockingdomino[7], [8], [9] andpulsedresetdomino
[10], [11]. As abaselinefor comparison,wealsoconsidera
standarddominoimplementationusingtwo-phaseclocking
with mid-cycle latches.We will presentsimulationresults
to show how theseadvancedcircuit designapproachesyield

significantimprovementsin throughput,at the expenseof
increasedpowerdissipation.

2. CORDIC ANGLE UNIT

Theiterativecomputationscanbedonein acarry-save man-
ner usingsigneddigit addersin the constant-factorredun-
dantCORDIC algorithm[1]. For the anglecalculationin
vectoringmode,theangle
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In theabove equation,
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representsthedirectionof ro-
tationatstep

#
of theiterative loop. A blockdiagramcorre-

spondingto Equations(1) and(2) is shown in Figure1.

3. HIGH-SPEED CIRCUIT TECHNIQUES

3.1. Skew-Tolerant Domino with Enhanced Precharge
Contention

Skew-tolerantdomino is basedon the useof overlapping
multi-phaseclocks[3], [4], [5]. The overlaptime between
adjacentphaseseliminatestheneedfor intermediatelatches.
In addition,it providesan efficient methodto budgetfor a
certaindegreeof imbalancedlogic andclockskew between
the blocks. For example,considertwo adjacentblocksof
dominologic, oneclockedon C . andtheotherclockedonC .ED � . The interval whenboth clocksarehigh is the time
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Fig. 1. Block diagramfor the constant-factorredundant
CORDICangleunit.

whencircuits thatareclockedon C . canborrow time from
thesubsequentcircuits thatareclockedon C .FD � . Theseef-
fectsleadto a significantreductionin theamountof clock-
ing overheadcomparedto standardtwo-phasedomino.The
netresultis thatthecircuitscanoperateathigherspeed.

Enhancedprechargecontention(EPC)[6] alsoprovides
increasedcomputationalefficiency by allowing usefulwork
to bedoneduringtheprechargephase.Thebasicideais to
remove the NMOS evaluateor “foot” transistorsfrom the
pull down network,so that intentionalfighting occursdur-
ing the precharge phase.This fighting is beneficialin the
sensethat it reducesthe precharge voltageon thosenodes
thatwill eventuallybedischargedto groundduringthesub-
sequentevaluatephase.With areducedprechargevoltage,it
will takea shorteramountof time to dischargethosenodes,
which increasesthespeedof thesignalpropagation.While
thetechniquedoesdissipateDC power alongthepathsthat
are fighting, this may be consideredto be an acceptable
trade-off in high-speedapplications.

3.2. Non-Blocking Domino

A dominologic stagewill have oneor moreinputs.In gen-
eral theseinputscanarrive at the stageat different times.
If theclock phasecontrollinga stageis high, the latestar-
riving inputsignalwill determinetheworst-casetimewhen
the stagewill evaluate. A clocking schemeis said to be
non-blockingif, for all dominostages,therisingedgeof the
clock phasecontrolling a stageoccursbeforethe latestin-
putsignalarrives[7], [8], [9]. If this is not thecase,thenthe

clockingschemeis saidto beblocking. The two casesare
illustratedin Figure2, where G is the latestarriving signal
into a dominologic stagethat is controlledby clock phaseC . . In orderto maximizethecomputationspeed,oneshould
designthecritical pathsothatit consistsof a seriesof non-
blockingstages.
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Fig. 2. Timing diagramsfor non-blockingand blocking
cases.

3.3. Pulsed Reset Domino

Anotherrecentlyintroducedhigh-speedcircuit styleis pulsed
resetdomino[10], [11]. An exampleof this circuit style is
shown in Figure 3. The pulsedclock CIH is 3 time units
wide andthe transistorsaresizedsothat thedelaythrough
eachstaticor dynamiclogic gateis 1 time unit. The first
dominostageevaluatesat therisingedgeof CIH . 3 timeunits
later, C H goeslow andnode1 goeslow, sothefirst domino
stageprecharges.Theevaluationandprechargeof thesec-
ondandthird stagesaredelayedby 2 and4 time units, re-
spectively. Thecircuit providesadequatemargin for thelo-
cal andglobal racesassociatedwith theoutputlatch. Note
thatfoot transistorsarenot requiredin thesecondandthird
stages.
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Fig. 3. Circuit structurefor pulsedresetdomino.

4. PERFORMANCE RESULTS AND
COMPARISONS

In orderto determinethe relative meritsof theseadvanced
circuit techniques,we performedHSPICEsimulationsus-
ing the0.25micronTSMCprocesswith asupplyvoltageof
3.3V. We usedskewedstaticgatesat theoutputsof domino
stagesto improvetheevaluationtimesandsecondaryprecharge



transistorsat internalnodesin pull-down networksto con-
trol chargesharing.WeakPMOSkeeperswereincludedfor
improvedrobustnessagainstnoise.

Asabaselinefor comparison,wesimulatedtheCORDIC
angleunitusingstandardtwo-phasedomino,with mid-cycle
latchesplacedbetweentheshifterandthesigneddigit adder
blocks. The resultsfor this caseare shown in Figure 4.
Onecanseethat the clock cycle time is 2.76 ns andsev-
eral sourcesof overheadareevident. Therearetwo latch
propagationtimesandthereis unusedor “dead” time dur-
ing thefirst half-cycle. Thedeadtime is dueto the imbal-
ancein the propagationdelaysduring the two half-cycles.
Thesesourcesof overheadaretypical of the situationone
encountersin standardtwo-phasedominodesigns.
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Fig. 4. Simulationresultsfor traditionaltwo-phaseclocking
with mid-cycle latches.

Theresultsfor skew-tolerantdominowith 4-phaseover-
lappingclocksandenhancedprechargecontentionareshown
in Figure5. The partitioningof the logic into eachof the
four clockphasesis shown in thefigure.Notethatthereare
no latch propagationdelayssincelatchesarenot required
whenoverlappingclock phasesareused.Thecycle time is
reducedto 1.84ns,andthereis oneinstanceof timeborrow-
ing andtwo instancesof enhancedprechargecontention.

Theresultsfor thenon-blockingdominodesignareshown
in Figure6. The phasesC � and C�J aredelayedfrom the
clock C that drivesthe sourcelatches,andphaseC�K is de-
layedandstretchedto meettheholdtimerequirementof the
destinationstorageelements.Notethatthepropagationde-
lay time is furtherreducedto 1.77ns. Theimprovementis
dueto thefact thatnocritical signalwaitsfor aclock phase
to gohigh. While theEPCin thepreviouscaseallowssome
useful work to be doneduring precharge, it is not as ef-
fective assimply allowing the critical signal to propagate
throughdirectly.

Finally, Figure 7 shows the simulationresultsfor the
caseof pulsedresetdomino. As shown, the propagation
delay is reducedeven further to 1.51 ns. The speedin-
creaseover the non-blockingdesignis dueto the fact that
thepulsedresetcircuitsdonotuseevaluatetransistorsin the
pull-downnetworksafterthefirst stageof logic.
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Fig. 5. Simulationresultsfor skew-tolerantdominowith
enhancedprechargecontention.
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Thepropagationdelaysfor all four implementationsof
the CORDIC angleunit aresummarizedin Table1. It is
evident thatall threeof theadvancedcircuit techniquesare
substantiallyfasterthanthe baselineimplementation,with
thepulsedresetdesignbeingthefastest.

1.51 ns

1.77 ns

Table1: Propagation delay comparisons.

delay time
Propagation Improvement 

- - -

4 phase overlapping

clocking
Traditional 2 phase 

technique
High-speed circuit

Pulsed reset domino

Non-blocking domino

clocks with EPC 

2.76 ns

1.84 ns 33.3 %

35.9 %

45.3 %

The averagepower dissipationduring the propagation
delaytime for eachof the circuit designstylesis given in
Table2. In orderto provide a fair comparison,thecircuits
requiredto generatethelocal clock phasesin eachcaseare
includedin the power results. Eachof the advancedcir-
cuit techniquesusesmorepower thanthe baselinedesign,
with the pulsedresetimplementationrequiringthe highest
power.

Table2: Power consumption comparisons.

4 phase overlapping

clocking

technique
High-speed circuit

Traditional 2 phase - - -

128 %

Non-blocking domino

Pulsed reset domino

clocks with EPC 

Increase Average power

439.9 mW

234.3 mW

263.2 mW

115.4 mW

103 %

281 %

5. CONCLUSIONS

We have presentedadvancedcircuit designtechniquesand
simulationresultsfor high-speedimplementationsof aconstant-
factor redundantCORDIC angleunit. The relative bene-
fits of skew-tolerantdominowith enhancedprechargecon-
tention,non-blockingdominoandpulsedresetdominowere
explainedandquantitativelydemonstrated.Eachof thethree
advancedcircuit implementationsis substantiallyfasterthan
a baselinedesignusingtwo-phasedominocircuitswith in-
termediatelatches. The pulsedresetdominoimplementa-
tion resultedin thehighestperformanceof all of thedesign
implementations.At thesametime,thesecircuit techniques
result in higherpower dissipation,so they may not be ap-
propriatefor applicationsin which low power consumption
is theprimarydesignobjective.
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