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ABSTRACT

This paper considers the problem of estimating the autore-

gressive moving average (ARMA) power spectral density

when measurements are corrupted by noises and with miss-

ing data. The missing data model is based on a probabilistic

structure with unknown. In this situation, the spectral es-

timation becomes a highly nonlinear optimization problem

with many local minima. In this paper, we use the global

search method of genetic algorithm (GA) to achieve a global

optimal solution of this spectral estimation problem. From

the simulation results, we have found that the performance

is improved significantly if the probability of data missing

is considered in the spectral estimation problem.

1. INTRODUCTION

The spectral estimation becomes a problem in parameter es-

timation based on the measured data. In most cases, it is

assumed that the measurements always contain the signal.

In fact, in practical situations there may be a nonzero prob-

ability that any measurement consists of noise alone, i.e.,

the measurements are not consecutive but contain missing

data. The missing measurements are caused by a variety of

reasons, e.g., a certain failure in the measurement, intermit-

tent sensor failures, accidental loss of some collected data,

or some of the data may be jammed, fading phenomena in

propagation channels, and the effect of removing outliers 1-

2]. Estimating the spectrum of stationary time series with

missing data is more difficult than the spectral estimation

problem for the case without missing data. The difficulty

is that the standard definition of covariance in the statistical

analysis of data does not directly apply if some of the mea-

surements are unavailable [1]. Thus, many currently used

parameter estimation algorithms do not apply to this situa-

tion. For example, standard techniques like the periodgram

or the smoother periodgram will not apply to this situation,

unless properly modified. This paper is concerned with the

problem of spectral estimation when the data are corrupted

with measurement noise and some data are missed. We as-

sume the time points of missing data are unavailable and the

probability of missing data is unknown. Since the covari-

ance of corrupted noise and the probability of data missing

also need to be estimated, the spectral estimation problem,

based on ARMA modeling and the least square error crite-

rion, become a highly nonlinear parameter estimation prob-

lem. The parameters of ARMA model and the probability

of missing data are specified to minimize the mean square

estimation error. There exist many local minima. In this sit-

uation, a GA based parameter estimation algorithm is pro-

posed to achieve the global optimal solution of the spectral

estimation problem.

Recently, the genetic algorithm has been introduced for

optimization searching [3]. The genetic algorithm applies

operators inspired by the mechanics of natural selection to a

population of binary strings encoding the parameter space.

It is a parallel global search technique that emulates natu-

ral genetic operators such as reproduction, crossover, and

mutation. At each generation, it explores different areas of

the parameter space, and then direct the search to the region

where there is a high probability of finding improved per-
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Figure 1: Signal model.

formance. Because the genetic algorithm simultaneously

evaluates many points in parameter space, it is more likely

to converge toward the global solution. In particular, it need

not assume the search space being differentiable or contin-

uous, and can also iterate several times on each datum re-

ceived. Hence, it is very suitable to treat the global opti-

mization problem of the nonlinear spectral estimation under

the corrupted noises and missing data.

2. PROBLEM DESCRIPTION

Consider an ARMA time series fx(k)g defined by the fol-

lowing stochastic process

x(k) = �

nX
i=1

aix(k � i) +

qX
i=0

biv(k � i) (1)

where fv(k)g is a zero mean unit-variance white Gaussian

noise. We assume that at random instant the signal x(k)

may be absent from the measurement. Let the sequence

fxm(k)g be defined as

xm(k) = g(k)x(k) (2)

where g(k) is binary random variable such that

g(k) =

�
1 if x(k) is measured
0 if x(k) is missing

(3)

Thus, xm(k) can be regarded as the measurement of

x(k) with missing data. Moreover, xm(k) is also assumed

to be corrupted by zero mean measurement noise n(k) with

variance �2
n

. Let fy(k)g denote the observed output signal

(see the Fig.1). Thus, the measurement equation is given by

y(k) = xm(k) + n(k) = g(k)x(k) + n(k) (4)

The following assumptions are made:

(A1) The v(k), n(k), are mutually independent.

(A2) The sequence g(k) is assumed to be asymptotically

stationary and independent of x(k). Furthermore, they are

mutually independent. The probability P for the measure-

ment xm(k) to be measured is assumed to be unknown and

given by

E [g(k)] = Pr [g(k) = 1] = P; 0 < P � 1 (5)

where E denotes the expectation operator, and P is a

fixed probability, independent of time. Thus the probability

of missing measurement is (1� P ).

(A3) Each measurement has the fixed probability of be-

ing missed, and for different instants, the occurrences of

missing data are mutually independent. Thus, by the as-

sumptions, the power spectral density (PSD) of the ARMA

time series fx(k)g in (1) is

Sx(f) =
(b0 + b1z

�1 + � � �+ bqz
�q):

(1 + a1z
�1 + � � �+ anz

�n):

(b0 + b1z
1 + � � �+ bqz

q)

(1 + a1z
1 + � � �+ anz

n)
jz=ej2�f

=

1X
l=�1

rx(l)z
�l jz=ej2�f (6)

where rx(l) = E [x(k)x(k � l)] is nonlinear function

of the model parameters ai for i = 1; : : : ; n, and bifor i =

0; : : : ; q.

From equation (4-6), we can obtain the PSD of the re-

ceived data is

Sy(f) =
1X

l=�1

ry(l)z
�l jz=ej2�f

= P
2
:Sx(f) +

�
�
2
n
+ P:(rx(0)� P:rx(0))

�
= P

2

1X
l=�1

rx(jlj)e
�j2�fl +K (7)

where K = �
2
n
+ P:(rx(0) � P:rx(0)). Therefore, if

the system parameters a1; � � � ; an, b0; � � � ; bq are given, the

PSD of system can be computed from (8), Based on the

analysis above, the power spectral estimation problem un-

der corrupted noise and missing data is to estimate the sys-

tem parameters a1; � � � ; an, b0; � � � ; bq from the missing data



sequence fy(k)g in (4). In this spectral estimation problem,

not only the system parameters a1; � � � ; an, b0; � � � ; bq are

unknown but also the probability P and the noise’s variance

�
2
n

are also needed to be estimated.

Inspection the equation(10), the series as
P

1

l=�1 e
�j2�fl

as a power series has the property of completeness, we can

obtain

ry(l) =

�
P
2
rx(0) +K for l = 0

P
2
rx(l) for l 6= 0

(8)

From the received data sequence fy(k)g, let us define

the sample covariance by

bry(l) = 1

N � l

NX
k=l+1

y(k)y(k � l) (9)

where N is number of received data length. Note that

the sample covariances fbry(l)g are unbiased estimates of

the true covariances fry(l)g. The main idea is to search for

the polynomials
P

1

l=�1 ry(l)z
�l such that the correspond-

ing sequence fbry(0); � � � ; bry(M)g, from (10) and (12), a

reasonable criterion is to minimize the mean square error

as

min J(a1; � � � ; an; b0; � � � ; bq ; P; �
2
n
) (10)

= min

(
MX
l=0

(ry(l)� bry(l))2
)

= min

(
(ry(0)� bry(0))2 + MX

l=1

(ry(l)� bry(l))2
)

In general, J is a very highly nonlinear function of the

probability P , noise variance �2
n

, and the coefficients ai for

i = 1; : : : ; n, and bifor i = 0; : : : ; q. There may exist many

local minima. It is very difficult to find the global minimum

of J in (13) by the conventional methods. Genetic algo-

rithms are optimization and machine learning algorithms,

initially inspired from the processes of natural selection and

evolution genetics. Therefore, in this study, genetic algo-

rithms will be employed to specify the coefficients of P;

�
2
n
; ai for i = 1; : : : ; n, and bi for i = 0; : : : ; q to solve

the spectral estimation problem under corrupted noise and

missing data in (13).

3. GENETIC ALGORITHM IN SPECTRAL

ESTIMATION UNDER CORRUPTED NOISE AND

MISSING DATA

3.1. Simple Genetic Algorithm

Genetic algorithms are stochastic optimization algorithms.

Their initial mechanisms are originally motivated by natural

selection and evolutionary genetics. The underlying princi-

ples of genetic algorithm were first published by Holland

in 1962 [3]. The mathematical framework was developed

in the late 1960’s, and has been presented in Holland’s pio-

neering books[4].

In this paper, a simple genetic algorithm is used. It is

an iterative procedure which maintains a constant size pop-

ulation � of candidate solutions. In each generation, the

genetic algorithm is composed of three operators: (1)repro-

duction, (2) crossover, and (3)mutation [3-4]. These opera-

tors are implemented by performing the basic tasks of cop-

ing strings, exchanging portion of strings, and changing the

state of bit from 10s to 00s. These operators ensure that the

best members of the population will survive, and their in-

formation contents are preserved and combined to generate

better population(offsprings). That is to improve the perfor-

mance of the next generation. It is shown in Schema theo-

rem [4] that the genetic search algorithm will converge ex-

ponentially from the view point of schema. With the above

descriptions, the procedure of a simple genetic algorithm is

given as follows.

(1) Generate randomly a population of binary strings.

(2) Calculate the fitness for each string in the population.

(3) Create offspring strings by three operators (repro-

duction, crossover, and mutation).

(4) Evaluate the new strings and calculate the fitness for

each string.

(5) If the search aim is achieved, stop and return; else

go to (3).

3.2. Design Procedure

Based on the above analysis, the design procedure of spec-

tral estimation of time series with noises and missing data

is divided into the following steps.



Step 0: Given the received data y(k). Compute

the

�
^
ry (0); � � � ;

^
ry (M)

�
.:

Step 1: Generate random population of T chro-

mosomes.

Step 2: Find the impulse response of the func-

tion (b0+b1z
�1+���+bqz

�q):(b0+b1z
1+���+bqz

q)

(1+a1z�1+���+anz�n):(1+a1z1+���+anzn)
up

to M .

Step 3: Compute the minimum mean square er-

ror�P
M

l=0(ry(l)�
^
ry (l))2

�
Step 4: Compute the corresponding fitness value

Step 5: Remain the best chromosome intact

into next generation.

Step 6: Use genetic operators (reproduction,

crossover, and mutation) to generate new chro-

mosomes into next generation.

Then, repeat the procedure from step 2 to step 6 until a

suitable parameter set is obtained.

4. DESIGN EXAMPLES

In this section, an example is given to illustrate both

the design procedure and the performance of the proposed

method. The number of evaluations was taken as equal to

100000 for the genetic algorithm. In the case of the genetic

algorithm, as population was 1000, the generation number

was equal to 100 for all functions. The simulative results are

obtained by averaging 20 independent Monte Carlo (MC)

runs.

Consider a system in Fig.1 with missing received signal

corrupted by colored noise such that

B(z)

A(z)
=

1

1 + 1:57z�1 + 2:1z�2 + 1:4386z�3+ 0:8409z�4
;

�
2
n

= 0:1

The results are summarized in Fig. 2. The results indi-

cate that the method behaves well in the cases with 40% of

missing samples.
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Figure 2: The power spectrum density. The solid line rep-
resents original. The dash line represents proposed method
with P = 0:6. The + represents LMS method with P = 0:8.


