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ABSTRACT covariance, the Gaussian has the largest Shannon rate-distortion
function [7]. Lapidoth strenthened this result to show that

Gauss mixtures are a popular class of models in statis-_~ " . . :
. - . . for iid Gaussian sources, a code designed for a Gaussian
tics and statistical signal processing because they can pro-

vide good £ts to smooth densities, because they have a rich:gﬂ:gg \E/V'if;dtiéh;;irzzgg;% i?ge?Ir?gmggtng?nTﬁir:gfgz
theory, and because the can be well estimated by exist- !

ing algorithms such as the EM algorithm. We here extend acterizes the G_aussmn source as a “worst case” source for
. : : data compression and provides an approach to robust com-
an information theortic extremal property for source cod-

. . 4 . . pression. A problem with this approach is that it can be too
ing from Gaussian sources to Gauss mixtures using high X A ) :

o - conservative, designing a code for a single Gaussian model
rate quantization theory and extend a method originally may yield a trustworthy rate-distortion tradeoff, but it ma
used for LPC speech vector quantization to provide a Lloyd be f):':\?lworse than that gbtainable using a better,source m?)ldel
clustering approach to the design of Gauss mixture mOdeIS“I'his motivates Gauss mixtures fromga compression point .
The theory provides formulas relating minimum discrimi- fview: a G mixtur rce m i vipd “ p”
nation information (MDI) for model selection and the mean Ot VIew. a” auss mixiire source may provide a ‘locally

: N . worst case” model if suitably used, yielding robust codes
squared error resulting when the MDI criterion is used in with better performance than a single Gaussian. This also
an optimized robust classi£ed vector quantizer. It also pro- suagests tP:)at analaous 1o a Llo % clusterin aesi n an-
vides motivation for the use of Gauss mixture models for >499 ! g Y g gn ap

robust compression systems for general random vectors. p_roa(.:h.to L.PC. speech.vect.or quantizers using a minimum
discrimination information distortion measure (the Itakura-

Saito distortion) [3], a specifc Lloyd clustering approach
1. INTRODUCTION can be used to design general Gauss mixture models based
on training data, providing a possibly useful alternative to
Gaussian models play a fundamentally important role in the popular EM algorithm. As shall be seen, the clustering
statistical signal processing and statistics for a variety of approach does yield some theoretical results that yield a

well known reasons, including their wealth of nice mathe- ey interpretation of minimum discrimination information
matical properties. As a notable examplé;-dimensional distortion measures.

Gaussian random vectdf with pdf ¢ mean vectorn, and
covariance matrid¥s with determinant K|,

1 1 2. QUANTIZATION

o10) = g o (5o - m K o))
(2m) 2 |K]2 2 : - .
The basic quantization notation and results may be found,
has a simple Shannon differential entropy: e.g., in [2]. We here recall several relevant de£nitions and
results. Assume thaX is ak-dimensional random vector
1 . - ) . ’
hg = 7/ def(z)In f(z) = = In(2me)*|K| (1) W|th smooth probab|I_|ty dgnsny funcpon (pdf) A Lloyd
2 optimal vector quantizer is summarized by

Less well known outside of information theory is the fact * an encoder mapping input vectors into an index set

that the Gaussian distribution plays an important extremal ® & decodey3 mapping each index < 7 into a reproduc-
role in Shannon rate distortion theory. Shannon showed!ion valuey; € C = {ym; m € 7}

that the largest differential entropy for a given mean and co- ® an overall quantizer mapping @(z) = 3(a(z))
variance is achieved with the Gaussian density and Sakri-e a distortion measuré(x, y;) between input: and repro-
son showed that of all distributions with a £xed mean and ductiony;.

This work was partially supported by by the National Science Foun- ® & Mmeasure of rate (in bits or nats').required to spegify
dation under grants NSF:MIP-9706284-001 and CCR-0073050. For simplicity we assume the traditional mean squared er-




ror distortion measure

k—1
d(z,y) = > o —yal? = (@ = y)'(z — ),

n=0

A is constant, which means that for large rate the optimal
guantizer is approximately a tessalating VQ such as a lat-
tice quantizer. This implies that

5f(R) ~ bke%hfeizg.

but the approach extends to more general measures (angy, 3 Gaussian pdf

will be explicitly considered for the minimum discrimi-
nation information (MDI) distortion measure for models
or pdf’s. The average distortion is deEned by (Q) =

Epld(X, Q(X))].

Several notions of rate are used. The most common are

r(y;) = log||C|| for £xed rate codingy(y;) = the num-
ber of bits required by a noiseless code to spetify the
decoder, and(y;) —logp(y;), wherep(y;) = proba-
bility X is encoded into reproductios. The latter def-
inition is an approximation to the optimal rate when the
codeword indices are optimally encoded, e.g., by a Huff-
man code. We use this de£nition of rate, which results
in entropy-constrained vector quantization (ECVQ) and an
average raté s (q) = Hy(¢(X)), the entropy of the quan-
tized output.

The operational distortion-rate functiofR) is

D¢(Q).

= inf
Q:Rf(Q)<R

5f(R)

Optimal codes must satisfy the generalized Lloyd condi-
tions:

e The encoder is minimum Lagrangian distortion mapping
a(x) = argmin,[d(z,y;) + Ar(y;)] where) is a Lagrange
multiplier.

e The reproduction codewords are centroids:

y: = inf, B[d(X, y)|a(X) = 1)]

e The indices are optimally losslessly encoded.

3. HIGH-RATE THEORY

Here we follow the approach of Gersho [1] (see also [2]),
which is an intuitive deriviation of the results of Zador [9]
using the quantizer point density ideas of Lloyd. Assume
that R(Q) is large and def£nguantizer point densitgf @

by
#{n:y, € S}~ / A(z) dx
5

Then
Di@ b [ A ) () ds
whereb,, depends only on the dimension, and
N A(z)
Ry(@Q = [ fla)n 5 o

These approximations andolier's & Jensen’s inequali-
ties imply that for variable rate quantization the optimal is
A(x) = eB~"i. The key observation is that the optimal

dg(R) ~ beet!re 2% = bk(Zﬂ'e)e_%R|K\%

Combining this fact with the extremal property of the Gaus-
sian pdf for differential entropy immediately provides a
high-rate quantization variation on Sakrison'’s result:

sup 67(R) = 64(R)
FEf(X-EX)(X-EX)t|=K

This property suggests a further extension. It is often
the case that full knowledge of the covariance of a ran-
dom vector is lacking, for example one might only trust-
worthy estimates of covariance values for small lags, as in
the case of low order correlations in LPC speech model-
ing. If the supremum above is instead taken ovef ailith
only the partial information, then the worst case will be
achieved by the Gaussian pdf with the covariance consis-
tent with the partial information and having the largest de-
terminant. This is the famous “maximum determinant” or
MAXDET problem [8] Given index set and partial co-
variancely = {55 (i,5) € N, £ndmax . x_—x_|K|.
The K achieving the maximum (if it exists) is MAXDET
extension ob+.

4. QUANTIZER MISMATCH

Suppose now thad is optimized for a Gaussiap but ap-
plied to f. Then using théog p(a(X) = ¢) approximation

to the rate computed using the design Gaussian pdf, taking
expectations with respect joyields

D@ ~ b [AH@)(w)ds
= bre FB M) ~ D (Q)
RU@) ~ [ ds

which for Gaussiang yields

~
~

Ri(Q)— R Tr(K;'Ky)

g

k

2
If my = my ands; = K,, thenD;(Q) =~ D,(Q) and
R;(Q) =~ R, reminiscent of Lapidoth’s £xed rate result for

iild Gaussian processes: the performance predicted for the
Gaussian is actually achieved for the nonGaussian.

+ =(mg—my)' K, (mg —my)

N = N =



5. GAUSS MIXTURE VQ models. The traditional solution for designing Gauss mix-
ture models is the expectation-maximization (EM) algo-

Suppose thafX has mixture pdff generated by classi- rithm, but we here adopt a VQ/clustering approach simi-
fying X into classed = 1,2,.... For the moment the |ar to that used for designing LPC models in very low rate
classifer is arbitrary, but later its design will be consid- speech coding [3].
ered. Letl, = L(X) denote the integer-valued class. Then  Suppose thatV is the collection of indices for which
{fxL(z|l),pr = Pr(L = 1)} is a mixture model forf. A we trust covariance estimatés(i, j). The allowed mod-
separate VQ can then be designed for each class, yielding|s are maximum (differential) entropy pdf's for partial co-
a classifed VQ structure. For each claese can estimate  variances, i.e., each model will be specifed by, =
a conditional meam; and covariance;, possibly only  (zc(; 4). (i, j) € N'} as the Gaussian pdf with' given
partially. The worst case source for quantizing this source py the MAXDET extension ofi 5.
is then the MAXDET Gaussian. Design an optimal code To match the inpufX to a Gaussian modej speci£ed
@, for each Gaussian componept yielding a(D;, i) by (my, K;) assume for the moment that yields a pdf
distortion{rate pair_ with performance th_at can be approxi- estimatef and measure the distortion or “distance” from
mategl using the_hlgh rate for_mulas. Th'.s yields a tWo-Step e input tog; by the discrimination information (relative
Cla.SS'Eed VQ: First classify |n_to Ga_ussmn_modeyl de_— entropy, Kullback-Leibler information [4])
scribed by(m;, K;), then quantize using optimal quantizer
Q for g;. X R
On the average the total information rate for tiie H(fllg) = /f(x) In
component ifk; —In p;, the number of nats needed to spec-
ify quantizer used plus the encoder output for that quan-
tizer. The overall average distortion is thBxiQ) = >, Dip;
and the overall average rafe(Q) = >, Ripi + H(p).
From high rate theory); ~ 6(R;) ~ byet (" ~F1) whence
D(Q) = by Y, e ~Fp, The optimal rate allocation

f(x)
(@) dx.

To form f from X, assume partial second order infor-
mation: a constant mean estimaite e.g., a sample aver-
age, and covariance values for some inde\éet.g., sam-
ple averages for small lags. Effectively we are assuming a
stationary random £eld. Choogeas the density consistent

{R} minimizing by, 3, ¢ (" ~f")p, subject to}, Ripi+  yith these second order moments which minimizes the rel-
H(p) < Ris readily solved by Lagrangian methods or di- ative entropy betwee and the £xed,. This is themini-
rectly using convexity argument&; = h; +R—H(p)—h mum discrimination information (MDI) density estimafe
where f giveng,. If gis assumed to be Gaussian, thawill also

- be Gaussian and
h = Zhlpz =h(X|L) , H(p)=H(L)
l

o . H(flla) = = <log PRI
The Lagrangian multiplier for the modifed distortion for 2 | K|
each quantizer is the samg;: = (2by, /k)e~ & (F=H®)=h), (12— ) KT (o — my) — k)
With this assignment it turns out that the optimum quan-
tizer point density for all the quantizers is the sarhgy) = Properties of maximum entropy models imply that the

eR—h—H(®) and that the conditional average distortion for trace term depends only cﬁﬁ’ﬁ (e.g., [6]) imply that the

each component is the samie; = bre~ £ (R=h=H{®) 50 relative entropy is minimized over alf by maximizing
thatD = bye & (B—h=H({®) Plugging in for the Gaussian |K|, i.e., by choosing’ as themaximum entropy estimate

case given the estimated partial covariance, yielding
Dysg = bk(Qﬂ.e)e%(%Zlm In |K;|+H(p)—R) (2) 1 |Kl| R X
dypr(X, 1) = 5 |log T TrKx K"
From the robustness properthis formula also gives |Kx|

the performance for nonGaussian source classif£ed into a +(x —m) K (x —my) — k)

mixture With{(ml, Kl»pl)}!
whereK x = argmax .y _ | K| is the MAXDET ex-
6. MINIMUM DISCRIMINATION INFORMATION tension of the partial covariance based on the input
CLASSIFICATION As in the analogous speech case [3], this distortion mea-
sure is amenable to the Lloyd clustering algorithm, i.e.,
Given the classifed quantizer structure, the question nowthere is a well deEned minimum distortion encoder using
arises how to select a good set of Gaussian mddelsK;) dyipr and the distortion has well deEned Lloyd centroids.
and how to classify an observed inpiitinto one of the In particular, the centroids:;; and K; must minimize the



conditional expected distortion.

Eldvpi(X, g1)|e(X) = 1]
5 |KX‘ +Tr(KxKl—1)

1 K
(111 K]

=-F =
—|—(Thx - ml)tKl 1(mX — ml) — k|Oz(X) = l)
wherer y and K x are the mean and the covariance esti-
mates for observatioX. Some matrix algebra leads to the
conclusion that the centroids ang = E[mx|a(X) =]
regardless ok; andK; = K, = E[Kx|a(X) = .

Application of the Lloyd algorithm to the MDI distor-
tion yields a model VQ, a mapping of input vectaks
(e.g., image blocks) into a model. The determinant maxi-
mization can be done by MAXDET, although highly struc-
tured problems usually have signi£cantly faster algorithms,
e.g., Levinson’s algorithm in the speech example. Since we
are considering variable rate systems, it is natural to con-
sider an entropy constrained VQ for the models as well:
decmpi(z, 91) = dupi(z,g1) — Alnp;. This model VQ
using the MDI distortion provides a classifer for use with
the classifed robust VQ compression scheme.

The MDI centroid formula provides a simple formula
for the average ECMDI distortion:

1 5
Dgcnpr = 5 > pin|Ki| - Eln|Kx|] + AH(p) (3)
!

In the special case where the MDI Lagrangiag- 1, then
from (2)

Dysg = bk(Qﬂ.e)e%(DECMDI-‘rE[lH|RX\]) (4)
which relates the MSE in the resulting classifed VQ to the
ECMDI distortion used to design the classifer, providing
a new interpretation of MDI classi£cation as the classifer
which minimizes the overall MSE when used in a classifed
compression system.

The minimum average Lagrangian distortion for rate
R > 0 must be smaller than that for raie= 0 (since the
constraint set is larger)y = 1 In K — E[ln |K x|, where
K = E[Kx]. Thus

InK (5)

| —

1
52]91 In |Ki| + AH (p) <
I

If again the MDIX = 1, this result conErms the intuition
that Dysg using a Gauss mixture VQ is smaller than the
distortion resulting from a single Gauss model, i.e., a Gauss

mixture worst case is better than a single Gaussian worst

case.

As a £nal interpretation of the ECMDI classifer, sup-
pose that given an input vectar we can form an estimate
of the underlying pdff, with covariancek’ and mean.

An alternative classifcation rule would be to choose the
modelg; <> Q; whichyields the smallest averag: (Q;)+

AR (Qq). From the quantizer mismatch results with nomi-
nal rateR;: Df(Ql) = bkei%(Rlihl) = bkef%(RfH(p)ih),
which does not depend drand hence does not effect the
choice. Some algebra then yields

1 -1 N
51n(27r6)k+RfH(p)7h+§ln\K|

+ dECMDI((m’ k)v (ml’Kl))

R (Qu)

so that selection dfto minimize the expected Lagrangian
MSE/rate distortion is equivalent to the ECMDI selection
of [.
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