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ABSTRACT

Gauss mixtures are a popular class of models in statis-
tics and statistical signal processing because they can pro-
vide good £ts to smooth densities, because they have a rich
theory, and because the can be well estimated by exist-
ing algorithms such as the EM algorithm. We here extend
an information theortic extremal property for source cod-
ing from Gaussian sources to Gauss mixtures using high
rate quantization theory and extend a method originally
used for LPC speech vector quantization to provide a Lloyd
clustering approach to the design of Gauss mixture models.
The theory provides formulas relating minimum discrimi-
nation information (MDI) for model selection and the mean
squared error resulting when the MDI criterion is used in
an optimized robust classi£ed vector quantizer. It also pro-
vides motivation for the use of Gauss mixture models for
robust compression systems for general random vectors.

1. INTRODUCTION

Gaussian models play a fundamentally important role in
statistical signal processing and statistics for a variety of
well known reasons, including their wealth of nice mathe-
matical properties. As a notable example, ak-dimensional
Gaussian random vectorX with pdf g mean vectorm, and
covariance matrixK with determinant|K|,

g(x) =
1

(2π)
k
2 |K| k

2
exp

(
−1

2
(x − m)tK−1(x − m)

)

has a simple Shannon differential entropy:

hg = −
∫

dxf(x) ln f(x) =
1
2

ln(2πe)k|K| (1)

Less well known outside of information theory is the fact
that the Gaussian distribution plays an important extremal
role in Shannon rate distortion theory. Shannon showed
that the largest differential entropy for a given mean and co-
variance is achieved with the Gaussian density and Sakri-
son showed that of all distributions with a £xed mean and
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covariance, the Gaussian has the largest Shannon rate-distortion
function [7]. Lapidoth strenthened this result to show that
for iid Gaussian sources, a code designed for a Gaussian
source yields the same rate and distortion on an arbitrary
source with the same second order moments [5]. This char-
acterizes the Gaussian source as a “worst case” source for
data compression and provides an approach to robust com-
pression. A problem with this approach is that it can be too
conservative, designing a code for a single Gaussian model
may yield a trustworthy rate-distortion tradeoff, but it may
be far worse than that obtainable using a better source model.
This motivates Gauss mixtures from a compression point
of view: a Gauss mixture source may provide a “locally
worst case” model if suitably used, yielding robust codes
with better performance than a single Gaussian. This also
suggests that, analgous to a Lloyd clustering design ap-
proach to LPC speech vector quantizers using a minimum
discrimination information distortion measure (the Itakura-
Saito distortion) [3], a speci£c Lloyd clustering approach
can be used to design general Gauss mixture models based
on training data, providing a possibly useful alternative to
the popular EM algorithm. As shall be seen, the clustering
approach does yield some theoretical results that yield a
new interpretation of minimum discrimination information
distortion measures.

2. QUANTIZATION

The basic quantization notation and results may be found,
e.g., in [2]. We here recall several relevant de£nitions and
results. Assume thatX is ak-dimensional random vector
with smooth probability density function (pdf)f . A Lloyd-
optimal vector quantizer is summarized by

• an encoderα mapping input vectorsx into an index setI
• a decoderβ mapping each indexi ∈ I into a reproduc-
tion valueyi ∈ C = {ym; m ∈ I}
• an overall quantizer mapping isQ(x) = β(α(x))
• a distortion measured(x, yi) between inputx and repro-
ductionyi.

• a measure of rate (in bits or nats) required to specifyyi.
For simplicity we assume the traditional mean squared er-



ror distortion measure

d(x, y) =
k−1∑
n=0

|xn − yn|2 = (x − y)t(x − y),

but the approach extends to more general measures (and
will be explicitly considered for the minimum discrimi-
nation information (MDI) distortion measure for models
or pdf’s. The average distortion is de£ned byDf (Q) =
Ef [d(X,Q(X))].

Several notions of rate are used. The most common are
r(yi) = log ||C|| for £xed rate coding,r(yi) = the num-
ber of bits required by a noiseless code to specifyi to the
decoder, andr(yi) = − log p(yi), wherep(yi) = proba-
bility X is encoded into reproductionyi. The latter def-
inition is an approximation to the optimal rate when the
codeword indices are optimally encoded, e.g., by a Huff-
man code. We use this de£nition of rate, which results
in entropy-constrained vector quantization (ECVQ) and an
average rateRf (q) = Hf (q(X)), the entropy of the quan-
tized output.

The operational distortion-rate functionδ(R) is

δf (R) = inf
Q:Rf (Q)≤R

Df (Q).

Optimal codes must satisfy the generalized Lloyd condi-
tions:
• The encoder is minimum Lagrangian distortion mapping
α(x) = argmini[d(x, yi) + λr(yi)] whereλ is a Lagrange
multiplier.
• The reproduction codewords are centroids:
yi = infy E[d(X, y)|α(X) = i)]
• The indices are optimally losslessly encoded.

3. HIGH-RATE THEORY

Here we follow the approach of Gersho [1] (see also [2]),
which is an intuitive deriviation of the results of Zador [9]
using the quantizer point density ideas of Lloyd. Assume
thatR(Q) is large and de£nequantizer point densityof Q
by

#{n : yn ∈ S} ≈
∫

S

Λ(x) dx

Then

Df (Q) ≈ bk

∫
Λ− 2

k (x)f(x) dx

wherebk depends only on the dimension, and

Rf (Q) ≈
∫

f(x) ln
Λ(x)
f(x)

dx

These approximations and Hölder’s & Jensen’s inequali-
ties imply that for variable rate quantization the optimal is
Λ(x) = eR−hf . The key observation is that the optimal

Λ is constant, which means that for large rate the optimal
quantizer is approximately a tessalating VQ such as a lat-
tice quantizer. This implies that

δf (R) ≈ bke
2
k hf e−2 R

k .

For a Gaussian pdf,

δg(R) ≈ bke
2
k hf e−2 R

k = bk(2πe)e−
2
k R|K| 1

k

Combining this fact with the extremal property of the Gaus-
sian pdf for differential entropy immediately provides a
high-rate quantization variation on Sakrison’s result:

sup
f :Ef [(X−EX)(X−EX)t]=K

δf (R) = δg(R)

This property suggests a further extension. It is often
the case that full knowledge of the covariance of a ran-
dom vector is lacking, for example one might only trust-
worthy estimates of covariance values for small lags, as in
the case of low order correlations in LPC speech model-
ing. If the supremum above is instead taken over allf with
only the partial information, then the worst case will be
achieved by the Gaussian pdf with the covariance consis-
tent with the partial information and having the largest de-
terminant. This is the famous “maximum determinant” or
MAXDET problem [8] Given index setN and partial co-
varianceΣN = {Σi,j ; (i, j) ∈ N , £ndmaxK:KN=ΣN

|K|.
TheK achieving the maximum (if it exists) is MAXDET
extension ofΣN .

4. QUANTIZER MISMATCH

Suppose now thatQ is optimized for a Gaussiang, but ap-
plied tof . Then using thelog p(α(X) = i) approximation
to the rate computed using the design Gaussian pdf, taking
expectations with respect tof yields

Df (Q) ≈ bk

∫
Λ− 2

k (x)f(x) dx

= bke−
2
k (R−hg) ≈ Dg(Q)

Rf (Q) ≈
∫

f(x) ln
Λ(x)
g(x)

dx

= R −
∫

f(x) ln g(x) − hg

which for Gaussiang yields

Rf (Q) − R ≈ 1
2

Tr(K−1
g Kf )

+
1
2
(mg − mf )tK−1

g (mg − mf ) − k

2

If mf = mg andKf = Kg, thenDf (Q) ≈ Dg(Q) and
Rf (Q) ≈ R, reminiscent of Lapidoth’s £xed rate result for
iid Gaussian processes: the performance predicted for the
Gaussian is actually achieved for the nonGaussian.



5. GAUSS MIXTURE VQ

Suppose thatX has mixture pdff generated by classi-
fying X into classesl = 1, 2, . . .. For the moment the
classi£er is arbitrary, but later its design will be consid-
ered. LetL = L(X) denote the integer-valued class. Then
{fX|L(x|l), pl = Pr(L = l)} is a mixture model forf . A
separate VQ can then be designed for each class, yielding
a classi£ed VQ structure. For each classl one can estimate
a conditional meanml and covarianceKl, possibly only
partially. The worst case source for quantizing this source
is then the MAXDET Gaussian. Design an optimal code
Ql for each Gaussian componentgl, yielding a (Dl, Rl)
distortion/rate pair with performance that can be approxi-
mated using the high rate formulas. This yields a two-step
classi£ed VQ: First classifyX into Gaussian modelgl de-
scribed by(ml,Kl), then quantize using optimal quantizer
Ql for gl.

On the average the total information rate for thelth
component isRl−ln pl, the number of nats needed to spec-
ify quantizer used plus the encoder output for that quan-
tizer. The overall average distortion is thenD(Q) =

∑
l Dlpl

and the overall average rateR(Q) =
∑

l Rlpl + H(p).
From high rate theoryDl ≈ δ(Rl) ≈ bke

2
k (hl−Rl) whence

D(Q) = bk

∑
l e

2
k (hl−Rl)pl. The optimal rate allocation

{Rl} minimizing bk

∑
l e

2
k (hl−Rl)pl subject to

∑
l Rlpl +

H(p) ≤ R is readily solved by Lagrangian methods or di-
rectly using convexity arguments:Rl = hl +R−H(p)−h
where

h =
∑

l

hlpl = h(X|L) , H(p) = H(L)

The Lagrangian multiplier for the modi£ed distortion for
each quantizer is the same:λl = (2bk/k)e−

2
k (R−H(p)−h).

With this assignment it turns out that the optimum quan-
tizer point density for all the quantizers is the same,Λ(x) =
eR−h−H(p), and that the conditional average distortion for
each component is the same,Dl = bke−

2
k (R−h−H(p)) so

thatD = bke−
2
k (R−h−H(p)). Plugging in for the Gaussian

case

DMSE = bk(2πe)e
2
k ( 1

2

∑
l
pl ln |Kl|+H(p)−R) (2)

From the robustness property,this formula also gives
the performance for nonGaussian source classi£ed into a
mixture with{(ml,Kl, pl)}!

6. MINIMUM DISCRIMINATION INFORMATION
CLASSIFICATION

Given the classi£ed quantizer structure, the question now
arises how to select a good set of Gaussian models(ml,Kl)
and how to classify an observed inputX into one of the

models. The traditional solution for designing Gauss mix-
ture models is the expectation-maximization (EM) algo-
rithm, but we here adopt a VQ/clustering approach simi-
lar to that used for designing LPC models in very low rate
speech coding [3].

Suppose thatN is the collection of indices for which
we trust covariance estimatesK(i, j). The allowed mod-
els are maximum (differential) entropy pdf’s for partial co-
variances, i.e., each model will be speci£ed byKN =
{K(i, j); (i, j) ∈ N} as the Gaussian pdf withK given
by the MAXDET extension ofKN .

To match the inputX to a Gaussian modelgl speci£ed
by (ml,Kl) assume for the moment thatX yields a pdf
estimatef̂ and measure the distortion or “distance” from
the input togl by the discrimination information (relative
entropy, Kullback-Leibler information [4])

H(f̂ ||gl) =
∫

f̂(x) ln
f̂(x)
gl(x)

dx.

To form f̂ from X, assume partial second order infor-
mation: a constant mean estimatem̂, e.g., a sample aver-
age, and covariance values for some index setN , e.g., sam-
ple averages for small lags. Effectively we are assuming a
stationary random £eld. Choosêf as the density consistent
with these second order moments which minimizes the rel-
ative entropy between̂f and the £xedgl. This is themini-
mum discrimination information (MDI) density estimateof
f̂ givengl. If g is assumed to be Gaussian, thanf̂ will also
be Gaussian and

H(f̂ ||gl) =
1
2

(
log

|Kl|
|K̂| + Tr(K̂K−1

l )

+(m̂ − ml)tK−1
l (m̂ − ml) − k

)
Properties of maximum entropy models imply that the

trace term depends only on̂KN (e.g., [6]) imply that the
relative entropy is minimized over all̂f by maximizing
|K̂|, i.e., by choosinĝf as themaximum entropy estimate
given the estimated partial covariance, yielding

dMDI(X, gl) =
1
2

(
log

|Kl|
|K̂X | + Tr(K̂XK−1

l )

+(m̂X − ml)tK−1
l (m̂X − ml) − k

)
whereK̂X = argmaxK:KN=ΣN

|K| is the MAXDET ex-
tension of the partial covariance based on the inputX.

As in the analogous speech case [3], this distortion mea-
sure is amenable to the Lloyd clustering algorithm, i.e.,
there is a well de£ned minimum distortion encoder using
dMDI and the distortion has well de£ned Lloyd centroids.
In particular, the centroidsml andKl must minimize the



conditional expected distortion.

E[dMDI(X, gl)|α(X) = l]

=
1
2
E

(
ln

|Kl|
|K̂X | + Tr(K̂XK−1

l )

+(m̂X − ml)tK−1
l (m̂X − ml) − k|α(X) = l

)
wherem̂X andK̂X are the mean and the covariance esti-
mates for observationX. Some matrix algebra leads to the
conclusion that the centroids areml = E[m̂X |α(X) = l]
regardless ofKl andKl = Kl ≡ E[K̂X |α(X) = l].

Application of the Lloyd algorithm to the MDI distor-
tion yields a model VQ, a mapping of input vectorsX
(e.g., image blocks) into a model. The determinant maxi-
mization can be done by MAXDET, although highly struc-
tured problems usually have signi£cantly faster algorithms,
e.g., Levinson’s algorithm in the speech example. Since we
are considering variable rate systems, it is natural to con-
sider an entropy constrained VQ for the models as well:
dECMDI(x, gl) = dMDI(x, gl) − λ ln pl. This model VQ
using the MDI distortion provides a classi£er for use with
the classi£ed robust VQ compression scheme.

The MDI centroid formula provides a simple formula
for the average ECMDI distortion:

DECMDI =
1
2

∑
l

pl ln |Kl| − E[ln |K̂X |] + λH(p) (3)

In the special case where the MDI Lagrangianλ = 1, then
from (2)

DMSE = bk(2πe)e
2
k (DECMDI+E[ln |K̂X |]) (4)

which relates the MSE in the resulting classi£ed VQ to the
ECMDI distortion used to design the classi£er, providing
a new interpretation of MDI classi£cation as the classi£er
which minimizes the overall MSE when used in a classi£ed
compression system.

The minimum average Lagrangian distortion for rate
R > 0 must be smaller than that for rateR = 0 (since the
constraint set is larger),D0 = 1

2 lnK −E[ln |K̂X |], where
K = E[K̂X ]. Thus

1
2

∑
l

pl ln |Kl| + λH(p) ≤ 1
2

lnK (5)

If again the MDIλ = 1, this result con£rms the intuition
thatDMSE using a Gauss mixture VQ is smaller than the
distortion resulting from a single Gauss model, i.e., a Gauss
mixture worst case is better than a single Gaussian worst
case.

As a £nal interpretation of the ECMDI classi£er, sup-
pose that given an input vectorX we can form an estimate
of the underlying pdf,f̂ , with covarianceK̂ and mean̂m.

An alternative classi£cation rule would be to choose the
modelgl ↔ Ql which yields the smallest averageDf̂ (Ql)+
λRf (Ql). From the quantizer mismatch results with nomi-

nal rateRl: Df̂ (Ql) = bke−
2
k (Rl−hl) = bke−

2
k (R−H(p)−h),

which does not depend onl and hence does not effect the
choice. Some algebra then yields

Rf̂ (Ql) =
1
2

ln(2πe)k + R − H(p) − h +
1
2

ln |K̂|
+ dECMDI((m̂, K̂), (ml,Kl))

so that selection ofl to minimize the expected Lagrangian
MSE/rate distortion is equivalent to the ECMDI selection
of l.
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