ERROR CONCEALMENT USING DATA HIDING

Peng Yin Bede Liu

Information Science and System
Electrical Engineering Department
Princeton University, Princeton, NJ 08544

ABSTRACT

Error concealment plays an important role in combating trans-
mission errors. Methods of error concealment that produce
better quality are generally of higher complexity, thus mak-
ing some of the more sophisticated algorithms not suitable
for real-time applications or are restricted to client devices
with limited capability. In this paper, we propose an ap-
proach to use data hiding to facilitate the error concealment
at the decoder. A set of features are extracted at the en-
coder and embedded imperceptibly into the host media. If
some part of the media data is damaged during the trans-
mission, the embedded features can be extracted and used
for recovery of lost data. The use of data hiding leads to re-
duced complexity at the decoder. Simulation shows that our
approach has better image quality than some well-known
conventional error concealment methods.

1. INTRODUCTION

Transmission over networks of digital multimedia data is
increasingly popular. Media data, especially in compressed
form can be quite vulnerable to imperfect channels, because
a single error bit may lead to objectionable visual distortion
at the decoder [1], making the combating of transmission
errors an important problem. There are two general ap-
proaches to error resilient communication: error control and
error concealment. Error control aims at lossless recovery,
treating the media stream as any other types of data. Er-
ror concealment, on the other hand, makes use of inherent
characteristics of the data such as spatial or temporal corre-
lations, and attempts to obtain a close approximation of the
original signal that is least objectionable to human percep-
tion [1]. In this paper, we shall only discuss the problems of
error concealment.

Various approaches have been proposed for error con-
cealment with different tradeoff between complexity and

This work was performed while the first author was a sum-
mer intern at PINTL and partially supported by a NJ State
R & D Excellence Grant. The authors can be contacted at
{pengyin,liu} @ee.princeton.edu,heathery @research.panasonic.com

Hong Heather Yu

Panasonic Information &
Networking Technology Laboratory
Princeton, NJ 08540

quality [1]. Algorithm based on linear interpolation is com-
putationally simple, but may produce severe blocky arti-
facts [2]. More powerful algorithms, such as those proposed
in [3] and [4], can alleviate blocky effects. But they are
computationally intensive, thus are not suitable for real-time
applications and for some capability-limited client devices.

Performing error concealment at the decoder generally
consists of two steps. First, the decoder estimates some fea-
tures of lost information. The features may be edge infor-
mation to help spatial interpolation [3] [4], or motion mode
and motion vectors for temporal error concealment [5]. Sec-
ond, the decoder interpolates lost information from the esti-
mated features using spatial, transform-domain, or temporal
interpolation. The first step is essential to recovery and is
computationally costly. It is thus desirable to shift the bur-
den of the first step to the encoder, so that the decoder needs
only to perform the second step using features already ex-
tracted by the encoder. In addition, performing feature ex-
traction at the encoder is more effective as the encoder usu-
ally have access to more information of the data [6]. Though
the complexity of the encoder is increased, the encoder usu-
ally has more computational resources and often can per-
form the tasks off-line.

The extracted features are side information to the me-
dia data and must be sent to the decoder. One way is to
attach it in a separate header, but this will increase bit-rate.
For compressed bit stream, this increase can be avoided by
careful bit allocation using complicated rate control [7]. An-
other approach is to use data hiding, which can embed the
features into the media without increasing the bit rate and
without introducing perceptible artifacts [6] [7]. The addi-
tional computation for data hiding can be made minimal by
using such approaches as odd-even embedding [8].

In this paper, we propose a general scheme of using data
hiding to facilitate error concealment at the decoder. The
scheme is outlined in Section 2. A detailed example is then
given in Section 3.

2. GENERAL ARCHITECTURE

The general system layout for our scheme is shown in Fig-
ure 1.

M;‘ block partition

}—;‘ assign masking block ‘
|

embedded media 7° :) : N B
4—‘ public data embedding F‘{ public feature extraction ‘

(a) embedding
" feature extraction};‘
recovered media [’ \

1 error concealment }‘

transmitted media /[B
" error detection

(b) extraction
Fig. 1. General Architecture

We shall use images to discuss our approach and shall
use block-based embedding instead of global embedding.
This is to prevent having both original data and feature data
lost in the transmission [6]. To be compliant with most stan-
dard codecs, the host image is first divided into 8 x 8 blocks.
Each block A has associated with a designated companion
block Ac into which the features of block A is embedded.
At the decoder, if part or all of block A is lost, the features
in the companion block Ac and the neighboring blocks of A
are used to recover A. In what follows, we will refer block
A as the host block. We note that by extracting the features
at the encoder, the computation burden of the decoder is re-
duced.

There are two general approaches to data hiding: pri-
vate data hiding and public data hiding. Private data hiding
requires the original media to extract the embedded infor-
mation while public data hiding does not. Only public hid-
ing schemes are applicable for error concealment, since the
original media may not be available at the decoder.

Since security is generally not involved, the embedded
data is also public. In order to avoid visual artifacts caused
by the embedded data, a human visual model will be used.
Another consideration is that we need the data hiding scheme
to have reasonably high hiding capacity, while robustness
against attack is not an important consideration [6].

In the next session, we will illustrate by a detailed exam-
ple how the scheme of Figure 1 actually works using multi-
directional interpolation method from [3] and [4].

3. ERROR CONCEALMENT
3.1. Edge Detection and Bilinear Interpolation

Multi-directional interpolation method in [3] and [4] attempts
to derive local geometric information of lost or damaged
data from surrounding pixels, and use this information for
“content dependent” interpolation. Here we assume that
damaged image regions can be correctly detected and cor-
rupted area is block-based .

A multi-directional interpolation method generally has
two steps:

1. Estimate local geometrical structure, such as edge di-
rections, of damaged block from surrounding correctly
received blocks;

2. Interpolate damaged block along edges by surround-
ing correctly received blocks.

How good the interpolation of Step 2 will produce is
critically dependent on Step 1. In [3], Step 1 consumes
roughly 30% of total computations; it consumes more in [4],
as iterations are required to estimate edge directions.

Unlike in [3] and [4], the encoder of our proposed scheme
extracts edge directions from the content block itself in-
stead of estimating them at the decoder from the surround-
ing blocks. It is assumed that the edge can be approximated
as a straight line in a small block. To determine the edge
directions, we employ Robert gradient operators [9]. The
gradient component of local edge for the pixel are first com-
puted by

Gy = Wit1,j—1 — Wi—1,j—1 + 2Uit1,5 — 2Uj—1,j
FUi1 41 — Yis1,j4+1, ()
I = Wi—1 j4+1 — Ui—1,j—1 + 2U; j41 — 2U; 51
FUi1, 1 — Yip1,j—1- ()

where g, and g, denote the horizontal and vertical gradients
respectively. The gradient vector magnitude and direction at
coordinate (i, j) are given by

9(i,7) = /92 + 95 3)

0(i, j) = tan" (2.)
The pixel location (3, §) is declared as an edge point if g; ;
exceeds some threshold ¢. The content block is denoted as
a smooth block if there is no edge point in it. Otherwise, it
is denoted as an edge block. For an edge block, the edge
orientation for those edge points is quantized to one of m
equally spaced directions in the range 0° — 180°,

0(i,j) + m/(2m)
w/m

where ¢6;,4(7,5) € {0,... ,m — 1}

Due to limited embedding capacity, only one edge is
embedded as side information even if the content block has
more than one edge. We select the one edge by using ma-

jority voting
Wima = kD, 9> D
?9ina(p,q)=I

99ina(p,q)=Fk
I = 0,....m—1, 1#k}, (6)
qb @Oing X /M + w/[2m. (7)

9(p,),

where (p, q) is the coordinate of edge points in the content
block, ¢f is the angular of the edge and ¢6;,,4 is the corre-
sponding index. We enlarge the block size for edge detec-
tion at the encoder by adding two nearest surrounding lay-
ers of the content block to reduce the blocky artifact of error
concealment. In embedding, we use 1 bit to denote whether
the content block is a smooth block or an edge block and
b = [log¥*] bits to denote the edge direction index g8;p.
Thus 1 bit embedding is required for smooth blocks and
1 + b bits for edge blocks. The features of the content block
are embedded into its companion block.

If a lost block is detected at the decoder, its block type
and edge features are extracted from its companion block
and then bilinear interpolation is performed to reconstruct
the missing block as in Figure 2. If the lost block is smooth,
the bilinear interpolation of pixel P is as in 2(a) .

da d1 dg d3
[d1+d2 P+ di+d2 P+ d3z+dg Ps + d3z+dg P4]
2

P =

®)

where Py, P>, P53 and P, are the neighboring pixels on the
inner layer of surrounding blocks [2]. If the lost block is an
edge block, the bilinear interpolation of pixel P along edge
direction @ is as in 2(b).

dy d;
P = P, P
htd T d

)

where P; and P, are linearly interpolated from their two
nearest neighboring pixels on the inner layer of surrounding
blocks [3],and d; = |P — P|.

P3
d3
py Ll sz - i P |
@ .
» Pl 5 - inner layer
¥~ lost block
P4 (a) (b)

Fig. 2. Bilinear Interpolation (a)smooth block (b)edge block

3.2. Embedding and Extraction

Multimedia data is often sent in compressed form. Here we
illustrate our approach using JPEG or MPEG like standards.
In particular, we embed the features of a content block into
the DCT coefficients of its companion block. For simplic-
ity, we adopt odd-even embedding where a coefficient value
is forced to be even to embed a ‘0’ and to be odd to embed
a ‘1’ [8]. Such enforcement is performed after quantiza-
tion. Embedding is done in low frequency DCT coefficients.
However, to avoid visual artifact, DC coefficients and the
first two lowest coefficients are left unchanged. Extraction
can be done by reversing the processing of embedding. In

order to avoid the situation that both the host and its com-
panion block are lost, the two blocks should be separated
as far as possible. In addition, we do not embed features of
block A into block B and features of block B into block A.
Instead, we use circular embedding [6]. That is, we embed
features of A into B and features of B into C, and features
of C into A.

3.3. Block Interleaving

For the proposed error concealment scheme to be effective,
the corrupted blocks must be isolated. But in the case of
sending compressed data, the concealment of contiguously
damaged blocks is harder than that for isolated blocks. To
minimize the likelihood of loss of contiguous blocks and
to facilitate recovery, a simple 2-way and a simple 4-way
block interleaving as illustrated in Figure 3 have been incor-
porated into JPEG like coding [1], with only a slight penalty
in compression efficiency and processing delay.

X0X0X0XO0 ABABABAB
0X0X0X0X CDCDCDCD
X0X0X0XO0 ABABABAB
0X0X0X0X CDCDCDCD

(a) 2-way interleaving
transmit all X's
followed by all O's

(b) 4-way interleaving
transmit all A's, followed
by all B's, then all C's, then all D's.

Fig. 3. Block Interleaving

Figure 4 shows the main processing flow of our scheme.
An image is first partitioned into blocks, and features are ex-
tracted for each block. The blocks are then interleaved, and
the DCT of each block is taken and the coefficients quan-
tized. Circular embedding is applied, followed by entropy
encoding to form a JPEG image. When generating a JPEG
image, we use self-synchronization codeword at the begin-
ning of each scan row of blocks, so a transmission error in
one block will only cause damage of a single row. At the de-
coder, error detection is first performed to find the damaged
blocks and the features are then extracted from their com-
panion blocks. After decompression and de-interleaving,
bilinear interpolation is employed to recover the lost blocks.

3.4. Experimental Result

The 512 x 512 “Lenna” image is used as an example in our
simulation. The block size is 8 x 8, and the quality factor for
JPEG compression is 75. Edge direction is classified into 16
sets and 4-way interleaving is employed. We compare our
result with geometrical-structure-based error concealment
(GSBEC) of [3]. We assume a quarter of the blocks are lost,
i.e., one out of every four blocks is missing. Figure 5 shows

host image /
‘ block partition k—" feature extraction " block interleaving ‘
embedded \

. A A
2
<mage entropy encoding +ﬁ circulate embedding +‘{ DCT and quantization ‘

(a) encoder
transmitted
image /

‘ error detection ‘—.‘ feature extraction F,‘ decompression ‘
recovered image [’ . K K X K
<« bilinear interpolation + de-interleaving }‘

(b) decoder

Fig. 4. Main Processing Flow

our result is comparable to [3], with 0.4dB improvement in
PSNR. There is no visual difference between original JPEG
image and our marked image which has embedded features.
Due to the interleaving, the bit rate increases about 1%. If
we attach the features in the header, we increase the bit rate
about 5%.

Due to limited embedding capacity, we can only embed
one edge. When the lost block has a complex geometric
structure, such as corner or streaks, our result is not as good
as in [3]. With our scheme, however, we can reduce 30%
computations at the decoder than [3].

4. CONCLUSION

We propose in this paper a method to improve the speed
of error concealment at the decoder by using data hiding.
Throughout the paper, we use images to illustrate our ap-
proach. However, the same approach can be applied to
video and audio. Issues such as how to fine tune the tradeoff
between capacity and quality for data hiding need further
investigation. Also, more tests need to be performed on a
larger data set.

5. ACKNOWLEDGEMENT

The authors would like to thank Dr. Wenjun Zeng of Sharp
Labs and Min Wu from Princeton University for enlighten-
ing discussion. In addition, Dr. Wenjun Zeng provides the
source code of error concealment algorithm [3].

6. REFERENCES

[1] Yao Wang and Qinfan Zhu, “Error control and concealment
for video Communication: an overview”, Proceedings of
IEEE, vol. 86, NO. 5, pp.974-997, May 1998.

[2] S. Aign and K. Fazel, “Temporal and spatial error con-
cealment techniques for hierachical MPEG-2 video codec”,
Globlecom’95, pp.1778-1783

[3] Wenjun Zeng and Bede Liu, “Geometric-structure-based er-
ror concealment with novel applications in block-based low
bit rate coding,” IEEE Transaction on Circuit System and
Video Technology, pp. 648-665, June 1999.

Fig. 5. Experimental Result:(1)upper: left:original; right:corrupted
(2)middle: left:JPEG image, PSNR=36.38dB; right:marked JPEG,
PSNR=36.06dB (3)lower:reconstructed image, left:using GSBEC,
PSNR=31.95dB; right:using proposed scheme, PSNR=32.32dB

[4] H. Sun and W. Kwork , “Concealment of damaged block
transform coded images using projections onto convex sets,”
IEEE Transaction on Image Processing, vol. 4, pp.470-477,
April 1995.

[5] W.Lam, A.Reibman, and B.Liu, “Recovery of lost or erro-
neously received motion vectors,” ICASSP’93, pp.304-315.

[6] H. Yuand P. Yin, “Multimedia data recovery using informa-
tion hiding,” Globecom’00.

[7] P. Yin, M. Wu and B. Liu, “Video Transcoding by Reducing
Spatial Resolution”, ICIP’00.

[8] M. Wu, H. Yu and A. Gelman, “Multi-level data hiding for
digital image and video,” SPIE, vol. 3854, 1999

[9] Anil K. Jain, “Fundamentals of digital image processing.”
Prentice Hall, 1989

