
ERROR CONCEALMENT USING DATA HIDING

Peng Yin Bede Liu

Information Science and System

Electrical Engineering Department

Princeton University, Princeton, NJ 08544

Hong Heather Yu

Panasonic Information &

Networking Technology Laboratory

Princeton, NJ 08540

ABSTRACT

Error concealment plays an important role in combating trans-

mission errors. Methods of error concealment that produce

better quality are generally of higher complexity, thus mak-

ing some of the more sophisticated algorithms not suitable

for real-time applications or are restricted to client devices

with limited capability. In this paper, we propose an ap-

proach to use data hiding to facilitate the error concealment

at the decoder. A set of features are extracted at the en-

coder and embedded imperceptibly into the host media. If

some part of the media data is damaged during the trans-

mission, the embedded features can be extracted and used

for recovery of lost data. The use of data hiding leads to re-

duced complexity at the decoder. Simulation shows that our

approach has better image quality than some well-known

conventional error concealment methods.

1. INTRODUCTION

Transmission over networks of digital multimedia data is

increasingly popular. Media data, especially in compressed

form can be quite vulnerable to imperfect channels, because

a single error bit may lead to objectionable visual distortion

at the decoder [1], making the combating of transmission

errors an important problem. There are two general ap-

proaches to error resilient communication: error control and

error concealment. Error control aims at lossless recovery,

treating the media stream as any other types of data. Er-

ror concealment, on the other hand, makes use of inherent

characteristics of the data such as spatial or temporal corre-

lations, and attempts to obtain a close approximation of the

original signal that is least objectionable to human percep-

tion [1]. In this paper, we shall only discuss the problems of

error concealment.

Various approaches have been proposed for error con-

cealment with different tradeoff between complexity and

This work was performed while the �rst author was a sum-

mer intern at PINTL and partially supported by a NJ State

R & D Excellence Grant. The authors can be contacted at

fpengyin,liug@ee.princeton.edu,heathery@research.panasonic.com

quality [1]. Algorithm based on linear interpolation is com-

putationally simple, but may produce severe blocky arti-

facts [2]. More powerful algorithms, such as those proposed

in [3] and [4], can alleviate blocky effects. But they are

computationally intensive, thus are not suitable for real-time

applications and for some capability-limited client devices.

Performing error concealment at the decoder generally

consists of two steps. First, the decoder estimates some fea-

tures of lost information. The features may be edge infor-

mation to help spatial interpolation [3] [4], or motion mode

and motion vectors for temporal error concealment [5]. Sec-

ond, the decoder interpolates lost information from the esti-

mated features using spatial, transform-domain, or temporal

interpolation. The �rst step is essential to recovery and is

computationally costly. It is thus desirable to shift the bur-

den of the �rst step to the encoder, so that the decoder needs

only to perform the second step using features already ex-

tracted by the encoder. In addition, performing feature ex-

traction at the encoder is more effective as the encoder usu-

ally have access to more information of the data [6]. Though

the complexity of the encoder is increased, the encoder usu-

ally has more computational resources and often can per-

form the tasks off-line.

The extracted features are side information to the me-

dia data and must be sent to the decoder. One way is to

attach it in a separate header, but this will increase bit-rate.

For compressed bit stream, this increase can be avoided by

careful bit allocation using complicated rate control [7]. An-

other approach is to use data hiding, which can embed the

features into the media without increasing the bit rate and

without introducing perceptible artifacts [6] [7]. The addi-

tional computation for data hiding can be made minimal by

using such approaches as odd-even embedding [8].

In this paper, we propose a general scheme of using data

hiding to facilitate error concealment at the decoder. The

scheme is outlined in Section 2. A detailed example is then

given in Section 3.

2. GENERAL ARCHITECTURE

The general system layout for our scheme is shown in Fig-

ure 1.

host media I block partition assign masking block

public feature extractionpublic data embedding
embedded media I´

(a) embedding

transmitted media I
error detection feature extraction

error concealmentrecovered media I´

(b) extraction

Fig. 1. General Architecture

We shall use images to discuss our approach and shall

use block-based embedding instead of global embedding.

This is to prevent having both original data and feature data

lost in the transmission [6]. To be compliant with most stan-

dard codecs, the host image is �rst divided into 8�8 blocks.

Each block A has associated with a designated companion

block Ac into which the features of block A is embedded.

At the decoder, if part or all of block A is lost, the features

in the companion blockAc and the neighboring blocks ofA
are used to recover A. In what follows, we will refer block

A as the host block. We note that by extracting the features

at the encoder, the computation burden of the decoder is re-

duced.

There are two general approaches to data hiding: pri-

vate data hiding and public data hiding. Private data hiding

requires the original media to extract the embedded infor-

mation while public data hiding does not. Only public hid-

ing schemes are applicable for error concealment, since the

original media may not be available at the decoder.

Since security is generally not involved, the embedded

data is also public. In order to avoid visual artifacts caused

by the embedded data, a human visual model will be used.

Another consideration is that we need the data hiding scheme

to have reasonably high hiding capacity, while robustness

against attack is not an important consideration [6].

In the next session, we will illustrate by a detailed exam-

ple how the scheme of Figure 1 actually works using multi-

directional interpolation method from [3] and [4].

3. ERROR CONCEALMENT

3.1. Edge Detection and Bilinear Interpolation

Multi-directional interpolationmethod in [3] and [4] attempts

to derive local geometric information of lost or damaged

data from surrounding pixels, and use this information for

�content dependent� interpolation. Here we assume that

damaged image regions can be correctly detected and cor-

rupted area is block-based .

A multi-directional interpolation method generally has

two steps:

1. Estimate local geometrical structure, such as edge di-

rections, of damaged block from surrounding correctly

received blocks;

2. Interpolate damaged block along edges by surround-

ing correctly received blocks.

How good the interpolation of Step 2 will produce is

critically dependent on Step 1. In [3], Step 1 consumes

roughly 30% of total computations; it consumesmore in [4],

as iterations are required to estimate edge directions.

Unlike in [3] and [4], the encoder of our proposed scheme

extracts edge directions from the content block itself in-

stead of estimating them at the decoder from the surround-

ing blocks. It is assumed that the edge can be approximated

as a straight line in a small block. To determine the edge

directions, we employ Robert gradient operators [9]. The

gradient component of local edge for the pixel are �rst com-

puted by

gy = ui+1;j�1 � ui�1;j�1 + 2ui+1;j � 2ui�1;j

+ui+1;j+1 � ui�1;j+1; (1)

gx = ui�1;j+1 � ui�1;j�1 + 2ui;j+1 � 2ui;j�1

+ui+1;j+1 � ui+1;j�1: (2)

where gx and gy denote the horizontal and vertical gradients
respectively. The gradient vector magnitude and direction at

coordinate (i; j) are given by

g(i; j) =
q
g2
x
+ g2

y
; (3)

�(i; j) = tan�1(
gy
gx

): (4)

The pixel location (i; j) is declared as an edge point if gi;j
exceeds some threshold t. The content block is denoted as

a smooth block if there is no edge point in it. Otherwise, it

is denoted as an edge block. For an edge block, the edge

orientation for those edge points is quantized to one of m
equally spaced directions in the range 0Æ � 180Æ,

q�ind(i; j) = b
�(i; j) + �=(2m)

�=m
c (5)

where q�ind(i; j) 2 f0; : : : ;m� 1g.

Due to limited embedding capacity, only one edge is

embedded as side information even if the content block has

more than one edge. We select the one edge by using ma-

jority voting

q�ind = fkj
X

q�ind(p;q)=k

g(p; q) �
X

q�ind(p;q)=l

g(p; q);

l = 0; : : : ;m� 1; l 6= kg; (6)

q� = q�ind � �=m+ �=2m: (7)

where (p; q) is the coordinate of edge points in the content

block, q� is the angular of the edge and q�ind is the corre-

sponding index. We enlarge the block size for edge detec-

tion at the encoder by adding two nearest surrounding lay-

ers of the content block to reduce the blocky artifact of error

concealment. In embedding, we use 1 bit to denote whether

the content block is a smooth block or an edge block and

b = dlogm2 e bits to denote the edge direction index q�ind.
Thus 1 bit embedding is required for smooth blocks and

1+ b bits for edge blocks. The features of the content block
are embedded into its companion block.

If a lost block is detected at the decoder, its block type

and edge features are extracted from its companion block

and then bilinear interpolation is performed to reconstruct

the missing block as in Figure 2. If the lost block is smooth,

the bilinear interpolation of pixel P is as in 2(a) .

P =
[d2

d1+d2
P1 +

d1

d1+d2
P2 +

d4

d3+d4
P3 +

d3

d3+d4
P4]

2
(8)

where P1, P2, P3 and P4 are the neighboring pixels on the

inner layer of surrounding blocks [2]. If the lost block is an

edge block, the bilinear interpolation of pixel P along edge

direction � is as in 2(b).

P =
d2

d1 + d2
P1 +

d1
d1 + d2

P2 (9)

where P1 and P2 are linearly interpolated from their two

nearest neighboring pixels on the inner layer of surrounding

blocks [3], and di = jP � Pij.

P
P1 P2

P3

P4

d1 d2
d3

d4

.
P

P1

P2

θ

d1
d2

inner layer

lost block

(a) (b)

Fig. 2. Bilinear Interpolation (a)smooth block (b)edge block

3.2. Embedding and Extraction

Multimedia data is often sent in compressed form. Here we

illustrate our approach using JPEG or MPEG like standards.

In particular, we embed the features of a content block into

the DCT coef�cients of its companion block. For simplic-

ity, we adopt odd-even embedding where a coef�cient value

is forced to be even to embed a `0' and to be odd to embed

a `1' [8]. Such enforcement is performed after quantiza-

tion. Embedding is done in low frequencyDCT coef�cients.

However, to avoid visual artifact, DC coef�cients and the

�rst two lowest coef�cients are left unchanged. Extraction

can be done by reversing the processing of embedding. In

order to avoid the situation that both the host and its com-

panion block are lost, the two blocks should be separated

as far as possible. In addition, we do not embed features of

block A into blockB and features of block B into block A.
Instead, we use circular embedding [6]. That is, we embed

features of A into B and features of B into C, and features

of C into A.

3.3. Block Interleaving

For the proposed error concealment scheme to be effective,

the corrupted blocks must be isolated. But in the case of

sending compressed data, the concealment of contiguously

damaged blocks is harder than that for isolated blocks. To

minimize the likelihood of loss of contiguous blocks and

to facilitate recovery, a simple 2-way and a simple 4-way

block interleaving as illustrated in Figure 3 have been incor-

porated into JPEG like coding [1], with only a slight penalty

in compression ef�ciency and processing delay.

x o x o x o x o

o x o x o x o x

x o x o x o x o

o x o x o x o x
(a) 2-way interleaving

transmit all X's

followed by all O's

A B A B A B A B

C D C D C D C D

A B A B A B A B

C D C D C D C D

(b) 4-way interleaving

transmit all A's, followed

by all B's, then all C's, then all D's.

Fig. 3. Block Interleaving

Figure 4 shows the main processing �ow of our scheme.

An image is �rst partitioned into blocks, and features are ex-

tracted for each block. The blocks are then interleaved, and

the DCT of each block is taken and the coef�cients quan-

tized. Circular embedding is applied, followed by entropy

encoding to form a JPEG image. When generating a JPEG

image, we use self-synchronization codeword at the begin-

ning of each scan row of blocks, so a transmission error in

one block will only cause damage of a single row. At the de-

coder, error detection is �rst performed to �nd the damaged

blocks and the features are then extracted from their com-

panion blocks. After decompression and de-interleaving,

bilinear interpolation is employed to recover the lost blocks.

3.4. Experimental Result

The 512� 512 �Lenna� image is used as an example in our

simulation. The block size is 8�8, and the quality factor for

JPEG compression is 75. Edge direction is classi�ed into 16

sets and 4-way interleaving is employed. We compare our

result with geometrical-structure-based error concealment

(GSBEC) of [3]. We assume a quarter of the blocks are lost,

i.e., one out of every four blocks is missing. Figure 5 shows

block partition feature extraction block interleaving
host image I

DCT and quantizationcirculate embeddingentropy encoding

embedded

image I´

(a) encoder

error detection feature extraction decompression

de-interleavingbilinear interpolation

transmitted

image I

recovered image I´

(b) decoder

Fig. 4. Main Processing Flow

our result is comparable to [3], with 0:4dB improvement in

PSNR. There is no visual difference between original JPEG

image and our marked image which has embedded features.

Due to the interleaving, the bit rate increases about 1%. If

we attach the features in the header, we increase the bit rate

about 5%.

Due to limited embedding capacity, we can only embed

one edge. When the lost block has a complex geometric

structure, such as corner or streaks, our result is not as good

as in [3]. With our scheme, however, we can reduce 30%

computations at the decoder than [3].

4. CONCLUSION

We propose in this paper a method to improve the speed

of error concealment at the decoder by using data hiding.

Throughout the paper, we use images to illustrate our ap-

proach. However, the same approach can be applied to

video and audio. Issues such as how to �ne tune the tradeoff

between capacity and quality for data hiding need further

investigation. Also, more tests need to be performed on a

larger data set.

5. ACKNOWLEDGEMENT

The authors would like to thank Dr. Wenjun Zeng of Sharp

Labs and Min Wu from Princeton University for enlighten-

ing discussion. In addition, Dr. Wenjun Zeng provides the

source code of error concealment algorithm [3].

6. REFERENCES

[1] Yao Wang and Qinfan Zhu, �Error control and concealment

for video Communication: an overview�, Proceedings of

IEEE, vol. 86, NO. 5, pp.974-997, May 1998.

[2] S. Aign and K. Fazel, �Temporal and spatial error con-

cealment techniques for hierachical MPEG-2 video codec�,

Globlecom'95, pp.1778-1783

[3] Wenjun Zeng and Bede Liu, �Geometric-structure-based er-

ror concealment with novel applications in block-based low

bit rate coding,� IEEE Transaction on Circuit System and

Video Technology, pp. 648-665, June 1999.

Fig. 5. Experimental Result:(1)upper: left:original; right:corrupted

(2)middle: left:JPEG image, PSNR=36.38dB; right:marked JPEG,

PSNR=36.06dB (3)lower:reconstructed image, left:using GSBEC,

PSNR=31.95dB; right:using proposed scheme, PSNR=32.32dB

[4] H. Sun and W. Kwork , �Concealment of damaged block

transform coded images using projections onto convex sets,�

IEEE Transaction on Image Processing, vol. 4, pp.470-477,

April 1995.

[5] W.Lam, A.Reibman, and B.Liu, �Recovery of lost or erro-

neously received motion vectors,� ICASSP'93, pp.304-315.

[6] H. Yu and P. Yin, �Multimedia data recovery using informa-

tion hiding,� Globecom'00.

[7] P. Yin, M. Wu and B. Liu, �Video Transcoding by Reducing

Spatial Resolution�, ICIP'00.

[8] M. Wu, H. Yu and A. Gelman, �Multi-level data hiding for

digital image and video,� SPIE, vol. 3854, 1999

[9] Anil K. Jain, �Fundamentals of digital image processing.�

Prentice Hall, 1989

