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ABSTRACT
Thefadingchannelis a significantproblemin many communica-
tions environments. In this paper, we examinethe performance
of unitary space-timemodulationin a time-varying channel.We
useaGauss-Markov modelof thecontinuouslyvaryingchannelto
characterizeperformanceof differential and trainedmodulation.
Wefind aperformanceceilingathighSNRwheretheeffectof the
changingchanneldominates.Weshow thatwhile trainedmodula-
tion providesanadvantageat low SNR,above a certainSNRdif-
ferentialmodulationgivesbetterperformance.We concludewith
simulationresultsthatsupportouranalysis.

1. INTRODUCTION

Recentresultsfrom information-theoreticanalysisof multiple an-
tennasystemspromiserobust datatransferat high datarates[1,
2]. Recognizingthat the assumptionof a known channelmade
in theseinitial investigationsmay not alwayshold, Marzettaand
Hochwald investigatedcapacitywhenneitherthe transmitternor
receiver know the channel[3], and proposedunitary signalma-
trices as a meansof achieving capacity[4]. Thesecodesmay
be viewed asa multiple-antennaextensionof phase-shift-keying
(PSK).

Hughes[5] and Hochwald et al. [6] apply thesesignalsto
theunknown channelby extendingdifferentialphase-shiftkeying
(DPSK)ideasto themultiple antennacase.Tarokhalsodiscusses
differentialmodulationwith orthogonalsignalsin [7]. All of these
researchersassumethatthechannelisapproximatelyconstantfor a
coherenceinterval. Becausethesetechniquesdo not requirechan-
nel estimation,a potentialadvantageis seenover trainedmodula-
tion, whereasignificantpercentageof thecoherenceinterval may
berequiredfor training.

The piecewise-constantmodel for the time-varying channel
coefficientsassumedin thesepapersis usefulfor several reasons.
It accuratelydescribestheway a channelmight appearin a time-
division multiple accessor frequency-hoppingsystem,andits ef-
fects are simple to analyze. In other applications,however, its
inability to accountfor the memoryof the channelmake it less
attractive. To incorporatechannelmemoryinto our analysis,we
adoptafirst-orderauto-regressivemodelfor thetime-variationsof
thechannelcoefficients.

In [8] we investigateda model that assumesthe channelis
constantfor an entiresymbol,but changesfrom symbolto sym-
bol accordingto a Gauss-Markov model. This modelprovidesa
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ceiling at high signalto noiseratio (SNR)beyondwhich increas-
ing transmitpower providesno benefit. In this paperwe analyze
performanceof unitaryspace-timeblock codeswhenthechannel
is allowed to vary within a symbol. This modelmoreaccurately
describesperformancein a rapidly time-varyingchannelandwith
largenumbersof transmitantennas.

2. BACKGROUND

Webegin by describingspacetimeblockcodingover thestandard
Rayleighfading channel,followed by the applicationof a first-
orderGauss-Markov processto modelsof themobilefadingchan-
nel. In what follows, we let

���������
	��
denotea zero-mean,unit-

variance,circularlysymmetriccomplex Gaussiandistribution. We
call amatrix isotropicallydistributed(i.d.) if its elementsareinde-
pendent

���������
	��
randomvariables.Also, �
� indicatesthe �����

identitymatrix.

2.1. Space-Time Coding in Rayleigh Fading

AssumeaRayleighflat-fadingcommunicationsenvironmentwith�
transmitand � receive antennas.A complex channelcoef-

ficient describesthe effect of the propagationbetweeneachpair
of transmitandreceive antennas.Thesechannelcoefficientsare
assumedto beindependentfrom elementto elementacrossthean-
tennaarray, but dependentwith time. At eachreceive antenna,
interferenceandotherdisturbancesaddtemporallyandspatially
independentnoiseto thesignal.

Consider� consecutive time instants. Let � �� be the
�

di-
mensionalsignalvectortransmittedat time ��� ���
	�������� � � 	 from
theantennaarray, ! � bethe

� �"� matrixof channelcoefficients
seenby � �� , and # bea �$�%� matrixof i.d. additivenoise.Then
the ���&� matrixof receiveddatais')(+* ,�.-0/�12# � (1)

where- isa �3�4� � blockmatrixcontaining� �� asblockdiagonal
elements,and/ asthe � � �0� blockmatrixobtainedby stacking! � :
- (657778 �
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;
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;
; :
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...

...: : ;
;
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? @@@A � and / (657778 ! 9! <

...!%�>= <
? @@@A �

(2)



In the casewherethe channelis constant( ! � ( ! , for �"����
	��
�
�B�>� �C� 	 ) then(1) reducesto thepiecewise-constantmodel
of [4]: ')(D* ,�)E !F12# � (3)

where E is the �F� � signalmatrix having � �� asrows. We re-
fer to E asthespace-timesymboltransmittedin a givenblock of� time instants.The valuesin this expressionarenormalizedso
that , representsthe SNR expectedat eachreceive antenna,and
doesnot dependon thenumberof transmitantennas.Modulation
andperformanceusingthis modelarediscussedin [3, 4] for both
known andunknown channels.

Thougha piecewise-constantchannelmodel is theoretically
attractive, it is not always realistic, especiallyfor environments
with rapidly moving users. In suchsituations(1) is moreappli-
cable. Using the Gauss-Markov modelof the fadingcoefficients
presentednext, we will show that (1) canbe presentedin a form
similar to (3) with adiagonalmatrixmodifyingthesignalstrength
at eachtime instant.This varyingsignalstrengthwill accountfor
theeffectsof thechanneltimevariations.

2.2. Differential vs. Trained Modulation

Space-timecodingalgorithmsoftenassumethatthereceiverknows
the channel.This knowledgeis usuallyobtainedby transmitting
known symbols,which the receiver usesto estimatethechannel.
This estimateis thenusedfor decodingsubsequentsymbolsover
which the channelis assumedto be constant.We refer to this as
trainedchannelmodulation.

Onemethodof modulationwith anunknown channelis differ-
entialunitaryspace-timemodulation[5, 6] whichassumesthatthe
channelis constantover eachpair of consecutive symbols. This
schemeusesdataat thecurrentandprevious time instantsfor en-
coding and decoding. The channelmatricesare assumedto be
equalatsymbolsG and GH� 	 andaredenotedwithoutsubscriptby! . Thecurrentsignalmatrix is a unitaryrotationof theprevious
signal: EJI (LKNMPO EJI = < , where Q I � ���
�
�
�R�TS � 	 indexes the
unitaryconstellationmatrix to betransmitted.Usingthesedefini-
tions,andworking with thecurrentreceiveddata

' I , thefollow-
ing expressionsareobtainedin [6]:' I ( * ,� K M O E I = < !U12# I 1 �V	 � 	�� K M O # I = < (4)( KNMPO�' I = < 1 # I � KNMPO # I = < (5)( KNMPO�' I = < 1$W X3Y# I � (6)

In (4),
KNMPO # I = < is addedandsubtractedfrom (3), resultingin (5)

whichdoesnotexplicitly dependon ! . Finally, becausethenoise
matricesarestatisticallyinvariantto multiplicationby unitaryma-
trices,(6) is obtained,whichis calledthe“fundamentaldifferential
receiverequation”in [6].

Becausethe effective channel(
' I = < ) hassignalstrength, ,

the systemhasan effective SNR of ,[Z X . This factorof X is the
multiple-antennageneralizationof thewell-known 3dblossin per-
formancewhenusingDPSKversuscoherentPSK.

2.3. A Gauss-Markov Fading Channel Model

In Section3, we analyzethe performanceof unitary space-time
modulationunderthe assumptionthat the channelmatrix !]\ oc-
curs ^ samplesafter a reference(or estimated)channel! ref

(

! \_=N` . We assumethat ! \ variesfrom that referencechannelac-
cordingto thefollowing first-orderauto-regressive (AR) model1:!]\ ( W a `
! ref 1 W 	 � a `
bH\ � (7)

where! 9 and bH\ arei.d., bH\ is independentfrom symbolto sym-
bol, a `c�ed and

�gf a ` fF	 . Underthis model, !%\ is i.d., and
thus(7) is a first-orderGauss-Markov process.With differential
coding ^�hi� , anddemodulationis basedon theprevioussymbol
(of length � ), while typically for trainedmodulation ^2hkj&� ,
with demodulationbasedon a channelestimateobtainedjml 	
symbolsin thepast.In generalwewill allow differentvaluesfor ^
(andthusfor a ` ) for eachtime instantwithin a symbol.Notethata ` ( 	 meansa time-invariantchannel,and a ` ( � indicatesa
completelyrandomtime-varyingchannel.

The AR parametera ` canbe chosen,for example,to match
thesecondorderstatisticsof modelsbasedon themechanismsof
physicalpropagation.Let ^on�n �qpP� denotetheautocorrelationfunc-
tion of an elementof ! . We focuson Jakes’ modelof the land
mobile fading channel[9], where ^on�n �qpT� (6r 9 � X�sut pP� . In this
equation,

r 9 � ; � is thezeroth-orderBesselfunctionof thefirst kind,t ( t
v��Rw , t
v is themaximumDopplerfrequency in thefadingen-
vironment,and� w is thesamplingperiod.SolvingtheYule-Walker
equationsfor a ` in thefirst-orderAR process(7) givesa ` (Lx ^on�n � ^ �^on�n ���y�{z[| (}r 9 � X�s>^�t � | � (8)

which provides a reasonablechoicefor a ` . This AR model is
anappropriateapproximationto Jakes’ modelfor realistic(small)
valuesof t whenusingthe maximum-likelihooddecodersof [4]
which dependon a single referencechannel. This fact is borne
out by thesimulationresultsof Section4, whereexcellentagree-
ment is obtainedwith datageneratedaccordingto Jakes’ model,
but analyzedwith theAR modelusing(8).

3. PERFORMANCE IN THE CONTINUOUSLY
CHANGING CHANNEL

In this section,we analyzeunitary space-timecoding using the
channelmodel(1) whichallowsadifferentchannelmatrixateach
time instant. Becausethe channelat the end of a symbol has
changedthe most, we expect the effective signal power for the
lastsignalelementstransmittedto belower thanfor thefirst. Our
analysisbelow supportsthis intuition.

3.1. Trained Modulation

We initially look at performance~ time samplesafter the refer-
encechannelis obtained. By letting ~ ( j&� , this modelsthe
performanceof trainedmodulationj symbols(of length � ) after
training. We assumethat the referencechannelis error-free and
thusdonotaccountfor estimationerrorin ourmodel.

Theorem 1. Giventhedatamodelof (1), assumethat thechannel
at each timeinstantvariesfroma referencechannel ! ref accord-
ing to (7). Theeffectof the time-varyingchannel ~ timesamples
after the referenceis that of a time-varyingeffectiveSNRand is
describedby thefollowingequation'�(D* ,���4� E ! ref 1��# � (9)

1Higherordermodelsmaybeappropriatefor analysisof morecomplex
decodersthanthoseusinga singlereferencechannel(which areassumed
here).



where � � is the diagonal matrix formedfrom � 9 � � < � ;B;
; � � �>= < ,
and � � ( * a �J� �	 1 �V	 � a �J� � � , �� f}	�� (10)

If the referencechannelis from more than a symbolin the past
( ~�l�� ) then� ��� � � = < .
Proof. Startingwith (2), we substitutein for eachchannelmatrix
to obtain

/ ( 57778 W a � ! ref 1 W 	 � a � b 9W a �J� < ! ref 1 W 	 � a �J� < b <
...W a �J�J�>= < ! ref 1 W 	 � a �J�J�>= < bH�>= <

? @@@A � (11)

Wefirst definetheblockmatrices�/ ( 578 ! ref
...! ref

? @A � ( 578 b 9
...b��>= <
? @A � (12)

andthediagonalmatrix� � ( diag
� a � � a �J� < �
�
�B�>� a �J�J�>= < ��� (13)

Thus
� � and

� � � � � � � containthepower in thereferencechan-
nel andnoiseportionsof / , which we maynow write in termsof
thesematrices:/ ( � �2����� � � � �/D1i� � � � � � � � �� � � ��� � � (14)

Substituting(14) into (1), weobtain' ( * ,��- � � ����� � � � �/�1 (15)* ,��-�� � � � � � � � �� � � ��� � 1�# �
Because - � �2����� � � � �/ (i�2��� E ! ref

�
(16)

alsobecauseE is W � timesaunitarymatrix [4], then* ,��-�� � � � � � � � �� � � ��� � ( * , �� � � � � � � � �� Yb � (17)

where Yb is i. d.,andwemaywrite'�(D* ,� � ��� E ! ref 1 * , �� � �
�&� � � � �� Yb�12# � (18)

Adding the variancesof the two noisematricesand combining
them,andthennormalizingto obtainunit varianceweobtain')( * ,� � � ��� � ��1 � �
�g� � � � , �� � = �� � E ! ref 1 �# � (19)

Recognizingthatthetermsin parenthesesareanalternateform
for �4� , wehaveobtained(9).

Theproduct, � |� maybeviewedastheeffectiveSNR(ESNR)
seenby � �� . Weseethatastimeprogresseswithin a symbolmatrix,
theESNRalsodecreases(assuming~�l�� ); themoretime that
haselapsedsincethelasttrainingestimate,thelower theeffective
SNR at eachsample.Because�4� modulatesthe signalstrength
with time,wewill use�u� E asthetransmittedsignalin placeof E
in theprobabilityexpressionsfrom[4] whencomparingsimulation
with thisanalysisin Section4.

It is instructive to look atwhathappensto �4� for limiting val-
uesof a � . Note that �����]���_� < � � ( � � , which merelyindicates

that for a constantchannel,the effect of � � disappears,and(3)
applies. In the otherdirection, ����� � � � 9 �u� ( : , indicatingthat
aschannelspeedincreases,theeffectiveSNRwill dropto zero.As
expected,we alsoseethat �����3 B� 9 � � ( : . As , goesto infinity
we find that theESNRat eachinstantceasesto dependon , , and
dependssolelyon theparametersof thechangingchannel:����� ¡�"¢ W , �4� ( diag £ * a �	 � a � � ;
;
; � * a �J�J�>= <	 � a �J�J�>= <�¤ � (20)

3.2. Differential Modulation

Wenow usethecontinuously-varyingmodel(1) andthetimevary-
ing channel(7) to analyzedifferentialunitarymodulation.Recall
that for differentialmodulation,the previous received datais the
effective channel,andthusit makessenseto usethechannelseen
by the previous symbolas the reference.This doesn’t solve our
problem,however, becausethereis adifferentchannelseenby the
previoussymbolateachof the � time instants.Wedesireto place
the referencechannelin thepositionwhich is closestto theother
channelsseenby the previous symbol. We chooseto useasref-
erencethechannelthat is temporallyin thecenterof theprevious
symbol; the first time samplein the currentsymbolwill thusbe�¥� <| timesamplesaway from thereference.

Theorem 2. Giventhe datamodelof (1), assumethat the chan-
nel at each time instantvariesaccording to (7). Theeffectof the
time-varyingchannelon differential modulationis that of a time-
varyinganddecreasingeffectiveSNR,andis describedby thefol-
lowingequation ' \ ( � Dif

KNMT¦�' \_= < 1��#�\ � (21)

where � Dif is thesignal-dependentmatrix:� Dif
( �2��=J�¥§�¨ � � 1 � =¥� § � = <�ª© 1 � � � 1 (22)� =J�¥§ � = <� © � � =¥�¥§«� KNMPO�� =J�¥§ K­¬MPO � , ��U® = �� �

where ~�¯ ( �R= <| , and ~�° ( �¥� <| , and
� � is asdefinedin (13).

Proof. Using Theorem1 we may write the currentandprevious
receiveddataas± I = < ( * ,� EJI = < ! ref 12� = <=J�¥§ Y# I (23)± I ( * ,� KNMPO EJI = < ! ref 12� = <� © Y# I � (24)

Adding andsubtractingthe noiseterm from (23) rotatedby
KNMPO

to (24)weobtain± I ( KNMPO £ * ,� EJI = < ! ref 1C� = <=J�¥§ Y# I ¤ (25)1�� = <� © Y# I � KNM I � = <=J�¥§ Y# I �
The termsin parenthesescombineto form

' I = < , and we may
combinethetwo noisetermsasfollows:± I (}KNMPO²' I = < 1«� � = |� © 1 KNM I � = |=J�¥§ K³¬M I � �� Y# I � (26)

Normalizingto obtainnoisewith unit variance,weobtainanequa-
tion for

' I whichhasthesameSNRas
± I :' I ( � � = |�ª© 1 K M I � = |=J� § K­¬M I � = �� K M O²' I = < 1´�# I � (27)

With thealternaterepresentationof � Dif as� Dif
( � � = |�ª© � KNM I � = |=J� § K³¬M I � = �� � (28)



−10 −5 0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

SNR

P
e

P
e
 with M=2,N=1,L=2 and a "Jakes" channel model.

Differential:  f=0.03000
Trained: K=2, f=0.03000

Fig. 1. Comparingthetwo channelmodels.

abit of matrixalgebrais sufficient to show that(27) is (21).

This result suggestsa simple techniquefor determiningthe
performanceof differentialunitaryspace-timecodingtechniques.
Becausethematrix � Dif modulatesthesignalstrengthwith time,
we replacethe signalmatrix

K M O
with � Dif

K M O
in probabilityof

errorexpressions[4] whencomparingsimulationwith ouranalysis
in Section4.

Note that if the signalsarediagonal,then � Dif losesits de-
pendenceon thesignal,andweobtain� Dif

( � ��=J� § ¨ �
�31 � =J�¥§ � = <� © 1 � �
�31 (29)� = <� © � =¥�J§i�eX � =J�¥§ � , �� ® = �� �
Again, it is usefulto look at limiting valuesfor theseESNR

matrices.Notethat ���������µ� < � Dif
( <| � � whichmerelyindicates

that for a constantchannel,theeffect of � Dif disappears,and(6)
applies.The interestingcaseis to seewhathappensas , goesto
infinity, or when errorsdue to noisebecomelessimportantand
errorsdueto thechangingchannelbecomedominant:����� B�"¢ W , � Dif

( � ��=¥�¥§�¨ � �
�31 � = <�ª© � =¥� § � (30)� =¥�¥§i� KNMPO�� =¥�J§ K%¬MPO � �� ® = �� �
As expected,we find at high SNRthatperformanceis limited by
thetime-varyingchannelandnot by thenoise.

4. RESULTS

We have presentedanalytic resultsquantifying performancefor
a continuouslyvarying fading channelwith memory. We now
presentsimulationresultsthatsupportouranalysis.Weuse

S ( X
signalsin our constellationswhich consistsimply of the identity
andnegative identitymatrices.Thoughourresultsholdtruefor all
unitarysignalmatrices,weusetheseconstellationsbecauseof the
resultingsimpleanalyticexpressionsfor probabilityof error.

We presentresultsfor
�¶( X transmitantennas,� ( 	

receive antennas,training interval j ( X , anda fadingparame-
ter of t ( ��� ��· . Thiscorrespondsto theDopplershift obtainedat
sixty milesperhourwith acarrierto bandwidthratioof 333,333/1;
this illustratestheutility of our analysisin a fadingenvironment.
Use of the ESNRparameterwith a¹¸ � from (8) in placeof the
trueSNRin theprobabilityof errorexpressionsin [4] asdiscussed
in [8] givestheanalyticresultsfor trainedanddifferentialmodu-
lation shown with the dottedlines in Figure1. The dashedlines
show analyticresultswith the continuouslychangingmodelpre-
sentedin Section3. Thesewereobtainedby replacingthesignal
matricesin thepairwiseprobabilityof errorexpressionsfrom [4]
with the productof the ESNRmatricesand the signalmatrices.
Thesolid linesgive theresultsof simulationswith channelcoeffi-
cientsthatobey Jakes’ model. We generatedchannelcoefficients
with Jakes’ fadingsimulator, andsimulatedsix million symbolsat
eachSNRvalueshown to calculatetheprobabilityof errorresults.
Thoughthereis a threedb advantagefor trainedmodulationap-
parentat low SNR,athighSNRdifferentialmodulationprovidesa
significantadvantage.Our analyticandsimulationresults2 match
very well for bothdifferentialandtrainedmodulation.
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