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ABSTRACT

Thefadingchannels a significantproblemin mary communica-
tions ervironments. In this paper we examinethe performance
of unitary space-timemodulationin a time-varying channel. We
usea Gauss-Markv modelof thecontinuouslyaryingchanneto
characterizgperformanceof differential and trained modulation.
We find a performanceeiling athigh SNRwherethe effect of the
changingchannedominatesWe shaw thatwhile trainedmodula-
tion providesanadwantageat low SNR,above a certainSNR dif-
ferentialmodulationgivesbetterperformance We concludewith
simulationresultsthatsupportour analysis.

1. INTRODUCTION

Recentesultsfrom information-theoreti@analysisof multiple an-
tennasystemspromiserobust datatransferat high datarates[1,
2]. Recognizingthat the assumptiorof a known channelmade
in theseinitial investigationamay not alwayshold, Marzettaand
Hochwald investigatedcapacitywhen neitherthe transmittemor
recever know the channel[3], and proposedunitary signal ma-
trices as a meansof achie/ing capacity[4]. Thesecodesmay
be viewed as a multiple-antennaxtensionof phase-shift-&ying
(PSK).

Hughes[5] and Hochwald et al. [6] apply thesesignalsto
theunknavn channeby extendingdifferentialphase-shifkeying
(DPSK)ideasto the multiple antennacase.Tarokhalsodiscusses
differentialmodulationwith orthogonakignalsin [7]. All of these
researcherassumehatthechannels approximatelyconstanfor a
coherencénterval. Becausehesetechniquesio notrequirechan-
nel estimationa potentialadvantages seenover trainedmodula-
tion, wherea significantpercentagef the coherencéntenal may
berequiredfor training.

The piecavise-constanmodel for the time-varying channel
coeficientsassumedn thesepaperss usefulfor severalreasons.
It accuratelydescribeghe way a channelmight appeaiin atime-
division multiple accessr frequeng-hoppingsystem,andits ef-
fects are simpleto analyze. In other applications,however, its
inability to accountfor the memoryof the channelmale it less
attractve. To incorporatechannelmemoryinto our analysis,we
adopta first-orderauto-rgressie modelfor the time-variationsof
thechannekoeficients.

In [8] we investigateda model that assumeghe channelis
constantfor an entire symbol, but changesrom symbolto sym-
bol accordingto a Gauss-Mar&v model. This modelprovidesa
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ceiling at high signalto noiseratio (SNR) beyond whichincreas-
ing transmitpower providesno benefit. In this paperwe analyze
performanceof unitary space-timelock codeswhenthe channel
is allowed to vary within a symbol. This modelmore accurately
describeperformancen arapidly time-varying channelandwith
large numberof transmitantennas.

2. BACKGROUND

We bagin by describingspacdime block codingoverthe standard
Rayleighfading channel,followed by the applicationof a first-

orderGauss-Mar&v procesgo modelsof themobilefadingchan-
nel. In whatfollows, we let CA/(0, 1) denotea zero-meanunit-

variance circularly symmetriccomplex Gaussiamistribution. We

call amatrixisotropically distributed(i.d.) if its elementsareinde-
pendenCN (0, 1) randomvariables Also, I indicatesheT x T

identity matrix.

2.1. Space-Time Coding in Rayleigh Fading

Assumea Rayleighflat-fadingcommunicationgrnvironmentwith

M transmitand N receve antennas.A complex channelcoef-
ficient describeghe effect of the propagatiorbetweeneachpair

of transmitandreceve antennas.Thesechannelcoeficientsare
assumedo beindependenfrom elemento elemenfcrosshean-
tennaarray but dependentvith time. At eachreceve antenna,
interferenceand other disturbancesdd temporallyand spatially
independennoiseto the signal.

ConsiderT’ consecutie time instants. Let s be the M di-
mensionakignalvectortransmittechttimes € 0,1..., 7 — 1 from
theantennarray H; bethe M x N matrixof channekoeficients
seerbys], andW beaT x N matrixof i.d. additive noise.Then
theT x N matrix of receveddatais

-, /L
X = [1:SH+W, 1)

whereS isaT xT M blockmatrixcontainings? asblockdiagonal
elementsand# astheT M x N block matrixobtainedoy stacking
H;:

st o0 - 0 H,

o st ... 0 H,
S=| . . . , and H =

0 O sT_, Hr_y

@)



In the casewherethe channelis constant{H; = H, for: €
0,1,...,T —1) then(1) reducedo the piecavise-constanmodel

of [4]:
_[r
X=,/Lsa+w, 3)

whereS istheT x M signalmaitrix having sT asrows. We re-
fer to S asthe space-timesymboltransmittedn a given block of
T time instants. The valuesin this expressionare normalizedso
that p representshe SNR expectedat eachreceie antennaand
doesnot dependon the numberof transmitantennasModulation
andperformancausingthis modelarediscussedn [3, 4] for both
known andunknavn channels.

Thougha piecavise-constanthannelmodelis theoretically
attractve, it is not always realistic, especiallyfor environments
with rapidly moving users. In suchsituations(1) is more appli-
cable. Using the Gauss-Markv modelof the fading coeficients
presentedhext, we will shaw that (1) canbe presentedn a form
similarto (3) with adiagonalmatrix modifying the signalstrength
at eachtime instant. This varying signalstrengthwill accountfor
the effectsof thechannetime variations.

2.2. Differential vs. Trained Modulation

Space-timeodingalgorithmsoftenassumehatthereceverknows
the channel. This knowledgeis usually obtainedby transmitting
known symbols,which the recever usesto estimatethe channel.
This estimateis thenusedfor decodingsubsequentymbolsover
which the channelis assumedo be constant.We referto this as
trainedchannemodulation.

Onemethodof modulationwith anunknavn channels differ-
entialunitaryspace-timenodulation[5, 6] whichassumethatthe
channelis constantover eachpair of consecutie symbols. This
schemeausesdataat the currentand previous time instantsfor en-
coding and decoding. The channelmatricesare assumedo be
equalatsymbolsr andr — 1 andaredenotedvithoutsubscripby
H. Thecurrentsignalmatrix is a unitary rotationof the previous
signal: S, = V,,S-_1, wherez, € 0,...,L —1 indexesthe
unitary constellatiormatrix to be transmitted.Using thesedefini-
tions,andworking with the currentreceved data X, thefollow-
ing expressionsareobtainedn [6]:

X, = ,/ﬁVZTS,,lHJrWTJra—1)VZTWT,1 (4)
= ‘/ZT-XT—I +WT_‘/Z-,-WT—1 (5)
= Vi, Xro1 4+ V2W, . (6)

In (4), V., W,_ isaddedandsubtractedrom (3), resultingin (5)
which doesnotexplicitly dependn H. Finally, becaus¢henoise
matricesarestatisticallyinvariantto multiplicationby unitaryma-
trices,(6) is obtainedwhichis calledthe“fundamentatifferential
recever equation”in [6].

Becausehe effective channel(X ;) hassignalstrengthp,
the systemhasan effective SNR of p/2. This factorof 2 is the
multiple-antenngeneralizationf thewell-known 3 dblossin per
formancewhenusingDPSKversuscoherenPSK.

2.3. A Gauss-Markov Fading Channel Model

In Section3, we analyzethe performanceof unitary space-time
modulationunderthe assumptiorthatthe channelmatrix H; oc-
cursr samplesafter a reference(or estimated)channelHyot =

H;_,. We assumehat H; variesfrom thatreferencechannelac-
cordingto thefollowing first-orderauto-rgressie (AR) modetf:

H, = \/EHref'F mEt ) (7)

whereH, andE; arei.d., E; is independentrom symbolto sym-
bol, o, € Rand0 < a, < 1. Underthismodel, H; isi.d., and
thus(7) is afirst-orderGauss-Mar&v process.With differential
codingr = T, anddemodulatioris basedon the previoussymbol
(of lengthT’), while typically for trainedmodulationr ~ KT,
with demodulatiorbasedon a channelestimateobtainedk” > 1
symbolsin thepast.In generalwve will allow differentvaluesfor »
(andthusfor «,) for eachtime instantwithin a symbol. Notethat
a, = 1 meansatime-irvariantchannelanda, = 0 indicatesa
completelyrandomtime-varyingchannel.

The AR parameter.,. canbe chosenfor example,to match
the secondbrderstatisticsof modelsbasedon the mechanismef
physicalpropagationLet r, (t) denotethe autocorrelatiorfunc-
tion of anelementof H. We focuson Jales’ modelof the land
mobile fading channel[9], wherery,(t) = Jo(2xft). In this
equationJo(-) is thezeroth-ordeBessefunctionof thefirstkind,
f = faTs, fa isthemaximumDopplerfrequeng in thefadingen-
vironmentandT isthesamplingperiod. Solvingthe Yule-Walker
equationdor a, in thefirst-orderAR procesg7) gives

_ [r(]” _ 2
Qr = |:7"hh(0):| - J0(27T1“f) ) (8)
which provides a reasonablechoicefor «,.. This AR modelis

anappropriateapproximatiorto Jalkes’ modelfor realistic(small)
valuesof f whenusingthe maximum-likelihood decoderf [4]

which dependon a single referencechannel. This factis borne
out by the simulationresultsof Section4, whereexcellentagree-
mentis obtainedwith datageneratediccordingto Jales’ model,
but analyzedwith the AR modelusing(8).

3. PERFORMANCE IN THE CONTINUOUSLY
CHANGING CHANNEL

In this section,we analyzeunitary space-timecoding using the
channelmodel(1) which allows a differentchannematrix ateach
time instant. Becausethe channelat the end of a symbol has
changedthe most, we expect the effective signal power for the
lastsignalelementgransmittedo belower thanfor thefirst. Our
analysisbelon supportghisintuition.

3.1. Trained Modulation

We initially look at performanceR time samplesafter the refer
encechannelis obtained. By letting R = KT, this modelsthe
performancef trainedmodulationK symbols(of lengthT') after
training. We assumehat the referencechannelis errorfree and
thusdo notaccounfor estimatiorerrorin our model.

Theorem 1. Giventhedatamodelof (1), assumehatthechannel
atead timeinstantvariesfroma refeencechannel H,qf accod-

ing to (7). Theeffectof thetime-varyingchannelR time samples
after the refelenceis that of a time-varyingeffective SNRand is
describedby thefollowing equation

p ~
X =4/ MPRSHref"‘ w, )

1Higherordermodelsmaybeappropriatdor analysisof morecomplex
decoderghanthoseusinga singlereferencechannel(which areassumed
here).



whee P is the diagonal matrix formedfrom po, p1, - -
and

*yPT-1,

QR+
i = <1. 10
b \/1 +(1- aR-}—i)P% - (10)

If the refeencechannelis from more than a symbolin the past
(R > T)thenp; < pi—1.

Proof. Startingwith (2), we substitutan for eachchanneimatrix
to obtain

varHet+ V1= arEo
VartiHref + V1 = ar1Er
H= : (11)
Vorir 1Hgi+ V1 —arir 1Er 1
Wefirst definethe block matrices
Hyef Eo
H= : = : , (12)
Hyef Er—y
andthediagonalmatrix
DR:diaQaR,aR.;_l,... ,aR+T,1) . (13)

ThusDg and(Ir — Dg) containthe powerin thereferencechan-
nelandnoiseportionsof H, which we maynow write in termsof
thesematrices:
1 ~
H= (D2 ®@Iu)H +[(Ir—Dr): @ TmlE . (14)
Substituting(14) into (1), we obtain

X = %s(pé ® In)H + (15)
LoS[(1r — Dr)? © Lul€ +W .
Because
S(D3 ® In)H = D3 SHygg, (16)

alsobecauses is +/T timesa unitarymatrix[4], then

\/%S[(IT - DR)% ® In)€ = \/p%(IT — Dg)

whereFE isi. d.,andwe maywrite

1 T 1.
X =\ [£.DESH e+ \[p-(Ir —Dr)*E+W . (18)

Adding the variancesof the two noise matricesand combining
them,andthennormalizingto obtainunit variancewe obtain

1 T. 1 <
X =/ £(DAU + (Ir — Dr)p37) *)SHef+ W . (19)

Recognizinghatthetermsin parenthesegreanalternatdorm
for Pr, we have obtained(9). |

[N

E, 7

Theproductpp? maybeviewedasthe effective SNR(ESNR)
seerbys? . We seethatastime progressewithin a symbomatrix,
the ESNRalsodecreasegassumingR > T'); the moretime that
haselapsedincethelasttrainingestimatethe lower the effective
SNR at eachsample. BecausePr modulateshe signalstrength
with time,we will usePr S asthetransmittedsignalin placeof S
in theprobabilityexpressiongrom [4] whencomparingsimulation
with thisanalysisin Sectiord.

It isinstructive to look atwhathappengo Pr for limiting val-
uesof ;. Notethatlim,, 1 Pr = Iar, whichmerelyindicates

that for a constantchannel the effect of Pr disappearsand(3)
applies. In the otherdirection,lim,; o Pr = 0, indicatingthat
aschannebkpeedncreasegheeffective SNRwill dropto zero.As
expectedwe alsoseethatlim,_,o Pr = 0. As p goesto infinity
we find thatthe ESNRat eachinstantceaseso dependon p, and
dependsolelyonthe parametersf thechangingchannel:

. o [ ar [ aryr—1
plgr;o VPPr = dlag< T—an’ AT e OtR+T—1> . (20)

3.2. Differential Modulation

We now usethecontinuously-aryingmodel(1) andthetime vary-
ing channel(7) to analyzedifferentialunitary modulation.Recall
thatfor differentialmodulation,the previous receved datais the
effective channel andthusit makessensedo usethe channelseen
by the previous symbolasthe reference.This doesnt solve our
problem however, becaus¢hereis a differentchannekeerby the
previoussymbolat eachof the T time instants We desireto place
thereferencechanneliin the positionwhich is closestto the other
channelsseenby the previous symbol. We chooseto useasref-
erencethe channethatis temporallyin the centerof the previous
symbol; the first time samplein the currentsymbolwill thusbe
% time samplesway from thereference.

Theorem 2. Giventhe datamodelof (1), assumehat the chan-
nel at ead time instantvariesaccoding to (7). Theeffectof the
time-varyingchannelon differential modulationis that of a time-
varyinganddeceeasingeffectiveSNR ,andis describeddy thefol-
lowing equation

Xt = Ppjf Vey Xe—1 + Wy, (21)
whee Ppjs is thesignal-dependenhatrix:

1

Poif = D2 [Ir+D gDz} +(Ir+ (22)

1
32

- wy T
D_r, D5} = D-ryp = Ve, Do, Vidpyr]

whee R,, = 51, andR, = £, and Dr is asdefinedn (13).
Proof. Using Theoreml1 we may write the currentand previous

receveddataas
Xoo1 = 1/%ST_1Href+ Ph W, (23)
XT = 1[%‘/;1_57—_1Href+ PEPIWT . (24)

Adding and subtractingthe noiseterm from (23) rotatedby V.

to (24) we obtain
V, <\/%ST,1Href+ P:lmWT> (25)
AP W, — Ve PTp W, .
The termsin parenthesesombineto form X,_;, and we may
combinethetwo noisetermsasfollows:
X, =V, Xoo1 + PR+ Vir PR VI 1EW, . (26)

Normalizingto obtainnoisewith unit variancewe obtainanequa-
tion for X, whichhasthesameSNRas X :

X, = [PR2 + Ve P23 VAl 3V, Xea + Wo . (27)

With thealternateepresentatioof Ppj as

X, =

Ppjf = [PR? = Ver P73 V7%, (28)
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Fig. 1. Comparinghetwo channeimodels.

abit of matrix algebras suficientto shav that(27)is (21). O

This result suggestsa simple techniquefor determiningthe

performancef differentialunitary space-timeodingtechniques.

Becausdhe matrix Pp;s modulateghe signalstrengthwith time,
we replacethe signalmatrix V. with Pp; V2, in probability of
errorexpression$4] whencomparingsimulationwith ouranalysis
in Section4.

Notethatif the signalsarediagonal,then Pp;; losesits de-
pendence®nthesignal,andwe obtain

1
Poif = D2g [Ir+D_r,Di)+Ir+ (29)

1

Dy'D_r,, —2D_n, )p%] ?

Again, it is usefulto look at limiting valuesfor theseESNR
matrices Notethatlima,; 1 Ppjf = %IM whichmerelyindicates
thatfor a constanthannelthe effect of Pp; disappearsand(6)
applies. Theinterestingcaseis to seewhathappenssp goesto
infinity, or when errorsdue to noisebecomelessimportantand
errorsdueto thechangingchannebecomedominant:

1
lim VpPoif = D2, [(r+DpDop, ~  (30)

T1-3
D_p, = Ve Dor, Vi) 1| ©
As expectedwe find at high SNR that performancas limited by

thetime-varyingchannelndnot by thenoise.

4. RESULTS

We have presentedanalytic resultsquantifying performancefor
a continuouslyvarying fading channelwith memory We now
presensimulationresultsthatsupportouranalysisWe useL = 2
signalsin our constellationavhich consistsimply of the identity
andnegative identity matrices. Thoughour resultshold truefor all
unitarysignalmatriceswe usetheseconstellationdbecausef the
resultingsimpleanalyticexpressiongor probability of error

We presentresultsfor M = 2 transmitantennasN' = 1
receve antennastrainingintenal K = 2, anda fadingparame-
terof f = 0.03. This correspondso the Dopplershift obtainedat
sixty milesperhourwith a carrierto bandwidthratio of 333,333/1;
thisillustratesthe utility of our analysisin a fadingervironment.
Use of the ESNR parametemwith axr from (8) in placeof the
true SNRin the probabilityof errorexpressionsn [4] asdiscussed
in [8] givesthe analyticresultsfor trainedanddifferentialmodu-
lation shavn with the dottedlinesin Figurel. The dashedines
shav analyticresultswith the continuouslychangingmodelpre-
sentedn Section3. Thesewereobtainedby replacingthe signal
matricesin the pairwiseprobability of errorexpressiongrom [4]
with the productof the ESNR matricesand the signal matrices.
Thesolid linesgive theresultsof simulationswith channekoefi-
cientsthatobey Jales’ model. We generateathannelcoeficients
with Jales’ fadingsimulator andsimulatedsix million symbolsat
eachSNRvalueshavn to calculatethe probabilityof errorresults.
Thoughthereis a threedb adwantagefor trainedmodulationap-
parentatlow SNR,athigh SNRdifferentialmodulationprovidesa
significantadvantage.Our analyticandsimulationresulté match
very well for bothdifferentialandtrainedmodulation.

5. REFERENCES

[1] I. E. Telatar “Capacityof multi-antennagaussiarchannels,
EuropeanTransactionson Telecommunicationsvol. 10, no.
6, pp.585-595Nov/Dec1999.

[2] G.J.FoschiniandM. J.Gans,“On limits of wirelesscommu-
nicationsin afadingenvironmentwhenusingmultiple anten-
nas, WrelessPersonalCommunicationsvol. 6, pp.311-335,
1998.

[3] T.L. MarzettaandB. M. Hochwald, “Capacityof a mobile
muliple-antenn@ommunicatiorink in Rayleighflat fading’
IEEE Transactionon InformationTheory vol. 45, no. 1, pp.
139-157May 1999.

[4] B. M. Hochwald and T. L. Marzetta, “Unitary space-time
modulationfor multiple-antenn@ommunicationsn rayleigh
flat fading, IEEE Transactionson InformationTheory vol.
46,n0.2, pp.543-564March2000.

[5] B.L. Hughes,"“Dif ferentialspace-timenodulatior, in Pro-
ceedingof the [IEEE WirelessCommunicationsandand Net-
working Confeence New Orleans,Septembed 999, vol. 1,
pp-145-149.

[6] B. M. Hochwald and W. Sweldens, “Differential unitary
space-timenodulatiord, To appearin IEEE Trans.Comm,
March1999.

[7] V. TarokhandH. Jafarkani, “A differentialdetectionscheme
for transmitdiversity’ IEEE Journal on SelectedAreasin
Communicationsvol. 18,no0. 3, pp.1169-1174July 2000.

[8] C.B. PeelandA. L. Swindlehurst, “Peformanceof unitary
space-timenodulationin rayleighfading; in Proc. Interna-
tional Confeenceon CommunicationsCC 2001, Helsinki,
Finland,June2001.

[9] W. C. Jales, MicrowaveMobile Communications IEEE
Press1993.

2Matlab softwareusedin generatehe resultsin this paperis available
athtt p: // www. ee. byu. edu/ ee/ wi r el ess/ or by contactingthe
first author



