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ABSTRACT

Gas sensing systems for detection and identification of odor-
ant molecules are of crucia importance in an increasing number
of applications. Such applications include environmental moni-
toring, food quality assessment, airport security, and detection of
hazardous gases. In this paper, we describe a gas sensing system
for detecting and identifying volatile organic compounds (VOCs),
and discuss the unique problems associated with the separability of
signal patterns obtained by using such a system. We then present
solutions for enhancing the separability of VOC patterns to enable
classification. A new incremental learning agorithm that alows
new odorants to be learned is a so introduced.

1. INTRODUCTION

Gas sensing systems for detection and identification of odor-
ants are of significant importance for many industries and orga-
nizations. Examples include food industries for testing the qual-
ity or wholesomeness of food products, military and humanitarian
organizations for locating buried land mines, petrochemical and
valve manufacturing companies for detecting and identifying haz-
ardous gases, and airport security and customs inspection agencies
for detecting illegal drugs and plastic bombs. Due to their abil-
ity to mimic the human olfactory system, albeit in a very limited
sense, gas sensing systems are often referred to as Electronic Nose
(Enose) Systems.

Enose systems for detection and identification of volatile or-
ganic compounds (VOCs), an important class of chemicalsthat can
readily evaporate at room temperature, have gained considerable
attention, since VOCs are encountered in many gas sensing appli-
cations. A major problem in VOC identification is the substantial
similarity of patterns obtained for different VOCs, a phenomenon
attributed to low selectivity of the sensing system. Most attempts
to solve this problem have provided only marginal success[1], and
only for specific VOCs. Furthermore, no attempt has been made
to develop an algorithm to incrementally learn new odorants.

In this paper we describe a gas sensing system along with new
pattern classification and incremental learning algorithms for de-
tection and identification of VOCs. An experimental setup that
can be used for various gas sensing applications is first described.
Unique challenges that are encountered in processing and identi-
fying signals obtained by using such systems are then presented,
followed by an intuitive and powerful pattern separability enhanc-
ing algorithm to address these challenges. Anincremental learning
algorithm is then introduced, which alows the system to identify
additional VOCsthat have not been previously encountered.
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2. EXPERIMENTAL SETUP FOR VOC DETECTION

Piezoel ectric acoustic wave sensors comprise a versatile class
of chemical sensors for the detection of VOCs. Addition or sub-
traction of molecular material from the surface or bulk of an acous-
tic wave sensor results in a change in its resonant frequency. The
frequency change, A f, caused by a deposited mass, Am, can be
described by the Sauerbrey Equation [2]. For quartz crystal mi-
crobalances (QCMs), thisrelationship is given by
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where f isthe fundamental resonant frequency of the bare crystal,
and A is the sensing surface area. For sensing applications, a sen-
sitive polymer film is cast on the surface of the QCM. This film
can bind the molecules of the VOC of interest, altering the reso-
nant frequency of the device in proportion to the added mass. The
QCM-based chemical sensor system typically consists of an array
of severa crystals, each coated with a different polymer film. The
response pattern of such an array then serves as the signature for
agiven VOC. This array design is aimed at improving identifica-
tion, which is hampered by the limited selectivity and sensitivity
of individual films.

An array of six 9 MHz QCMs was used in this study. The
QCMs were first coated with chromium/gold, which served as
electrodes. Each QCM was then coated with a different polymer
to sorb the VOCs of interest. The QCMswere mounted in asealed
test fixture and exposed to VOC vapors. Thevapor generation sys-
tem consisted of calibrated mass flow controllers, conventional gas
bubblers containing the VOCs, and a pair of three-way switchable
valves leading into the test fixture. The vapor at various concentra-
tionswas generated by flowing acarrier gas, typically dry nitrogen,
through the bubbler and further diluting the vapor with nitrogen to
obtain the desired concentration. The switchable valves were com-
puter controlled to automatically expose the sensor array to various
concentrations of VOCs. The frequency response was monitored
using an HP8753C network analyzer, interfaced to an |EEE 488
card installed in the PC, and an HP8516A resonator measurement
software. Real time data were displayed and analyzed to obtain
frequency shifts (relative to the baseline) vs. VOC concentration.
Typical noise levels (standard deviations of the baseline) for the
QCMswere around 0.1 Hz. Figure 1 depicts the overall schematic
of this setup.

Sensors were exposed to five VOCs, namely toluene (TL),
xylene (XL), ethanol (ET), octane (OC) and tricholoroethylene
(TCE) at concentrations of 70, 105, 140, 175, 245, 350 and 700
parts per million, in random order, for a duration of 10 minutes
each. After each VOC exposure, the test fixture was purged with
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Fig. 1. Experimental setup for the Enose system.
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Fig. 2. (d) Raw data (b) Detrended data.

dry nitrogen to flush the VOC molecules. At each concentration,
the frequency shift of each sensor was recorded to obtain a six
dimensional pattern, representing the exposed VOC at that con-
centration. Figure 2 shows atypical response to these seven con-
centrations of toluene from a single sensor.

3. ISSUESASSOCIATED WITH ODORANT PATTERNS

Several issues are associated with patterns obtained from these
systems. First, as seen from Figure 2(a), sensor responses often
exhibit adrift that needsto be corrected. Therefore, adrift removal
algorithm was first applied, which segments the data, computes
the best linear fit in the least mean square sense for each segment,
and then subtracts this fit from the original signal. Figure 2(b)
illustrates the output of this simple detrending scheme.

Sensor response amplitudes are linearly proportional to the
VOC concentration, where the proportionality constant defines the
sensitivity of the sensor for the given VOC. Since the concentra-
tion for an unknown VOC is aso unknown, the identification must
be based on signature patterns, and not on the concentration de-
pendent amplitudes. Therefore the concentration information was
removed by normalizing each pattern by the square root of the sum
of squares of sensor responses. However, this normalization re-
moves most of the discriminatory information, as shown in Figure
3, which illustrates responses of six sensors to toluene and xylene
before and after the normalization for a given concentration. Ad-
ditional information on the setup, the coatings, the database, and
comparison of the Enose to mammalian olfactory system can be
found in [3, 4].
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Fig. 3. Effect of normalization.

A number of classification algorithms, including neural net-
works, decision trees, and cluster analysis have been employed to
identify VOCs using their normalized sensor responses, however
none of these methods converged to a solution. This is attributed
to the poor selectivity of the sensors, which resulted in overlapping
class distributions in the pattern space. Therefore, a preprocessing
algorithm that can identify and augment the minor discriminatory
information between patterns of different classes (VOCS) is neces-
sary. Such a scheme isintroduced in the next section.

4. ENHANCING PATTERN SEPARABILITY

Many of the existing schemes for enhancing pattern separabil-
ity do not specifically target increasing intercluster distances, but
rather try to obtain the smallest set of features with the most dis-
criminatory information, through a mathematical transformation
or a set of rules. One method that specifically targets increasing
pattern separability is Fisher’s linear discriminant method, which
also reduces the dimensionality to C' — 1, where C' is the number
of classes [5]. This mandatory reduction in dimensionality, how-
ever, can work against pattern separability, since there may not be
enough discriminatory information left in C' — 1 features.

In this paper, we propose a new scheme where enhancing pat-
tern separability is achieved through nonlinear cluster transfor-
mation (NCT), a three-step supervised procedure that attempts to
increase the intercluster distances and reduce the intracluster dis-
tances, while preserving the dimensionality.

In the first step, reduction of intracluster distancesis achieved
by eliminating the outliers, using the Mahalanobis distance metric.
In the second step, the desired cluster separation is obtained by
trandlation of each cluster along an optimal direction, away from
al other clusters. This step, generates training data pairs for de-
termining the NCT function. In the third step, the data generated
in the second step is used to train a generalized regression neural
network (GRNN) to approximate the function mapping between
original and translated clusters.

The cluster trandlation step addresses the problem of closely
packed and possibly overlapping clusters. The underlying idea is
to move clusters away from each other in order to physicaly sepa-
rate them. Consider atwo-class problem with possibly overlapping
clusters, whose centers are located at m; and m,. The distance
between these two clusters can be increased if class | patterns are



trandlated along the vector S; = — (m» — m, ), and class |1 pat-
terns are translated along S; = —S; = —(m; — m3). Thisidea
can be extended to multi-class problems of arbitrary dimension-
ality, where patterns of class C; can be translated along S;. The
optimal direction S; can be computed as
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where C' is the total number of clusters. All patterns in cluster ¢
are moved along the direction of S;, and the trandated patterns
can then be obtained as X; = x; + (S;/||S;||) - dist;, where X;
is the new location of pattern x;, and dist; = 1/|m — m;| isa
normalizing constant that controls the amount of trandlation.

It can be shown that the directions of these translation vec-
tors are optimal [3], since these directions maximize the overall
intercluster distance D, defined as the summation of intercluster
distances between all cluster pairs:
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However, in order to translate a test pattern, we need to learn
how to trandate patterns without knowing to which class they be-
long. This problem can be thought of as a function approximation
problem, where the function to be approximated is the one that
maps original patterns to their new locations. A GRNN was used
to accomplish this function approximation. GRNNSs, special cases
of radial basis function (RBF) neural networks, have been used
with significant success in multidimensional function approxima-
tion. GRNNsdo not requireiterativetraining, and they can approx-
imate any arbitrary multidimensional function defined between a
set of input and output vectors. Detailed information on the use of
GRNNscan befound in [3, 6].

Figure 4 illustrates the effect of NCT on blind data which was
not used for training. Only three sensor responses were used in
Figure 4 for easy visualization, whereas computations were made
in six dimensions. Note that patterns corresponding to different
VOCs are very closely packed and overlapping before process-
ing, and they are separated considerably after the NCT processing.
Once the patterns have been preprocessed, the complexity of the
classifier can be significantly reduced. In fact, asingle layer mul-
tilayer perceptron (MLP) trained with 220 patterns corresponding
to five VOCs at various concentrations, was able to correctly clas-
sify 92% of 164 test patterns which were not used during training.
Recall that no classifier, including single or double hidden layer
MLPs, RBFs, or decision trees, was able to converge to a solution,
let alone correctly classify the majority of the test patterns when
trained with unprocessed signals.

5. INCREMENTAL LEARNING OF VOC PATTERNS

One of the main challenges in using Enose systems is to be
able to increase the number of odorants that can be identified over
time. From a pattern classification point of view, this requires an
algorithm that is capable of incremental learning of new classes,
without forgetting the previously acquired knowledge. Further-
more, the training database that was originally used to train the
system, may not be available by the time new training datasets
become available. Therefore, the algorithm should not require ac-
cess to previously used databases when learning new information.
Commonly used classification algorithms such as MLPs, RBFs, or

Fig. 4. (a) Before (b) after NCT processing.

wavelet networks are not capable of incremental learning, since
they need to be reinitialized and retrained with the combined old
and new data to learn the additional information. This causes all
previously acquired knowledge to be lost, a phenomenon known
as catastrophic forgetting.

LEARN++, which we first introduced in ICASSP 2000 [7], is
an algorithm that addresses all of the issues mentioned above. In
this section, we summarize the major points of LEARN++, and in-
troduce new features that improve classification performance. The
details and theoretical analysis of LEARN++ can be found in [3].

LEARN++ is based on generating a number of classifiers us-
ing different distributions of the training data, and then combining
the outputs of these classifiers using a weighted majority voting
scheme. The algorithm keeps track of the performance of each
classifier on each training instance, and generates a new training
subset based on the performances of al previous classifiers. In
particular, a weight is given to each instance, and this weight is
increased if the instance is misclassified. The updated weight is
then used to determine whether thisinstance should beincluded in
the next training set. A distribution is formed from these weights
according to which the next training set is chosen. Misclassified
instances are more likely to be selected into the next training set.
A new classifier is then trained with the new training set, added
to the pool of classifiers generated earlier, and the combined clas-
sification performance of all classifiers is then used to determine
the next training set. Multiple classifiers are generated for any
given database, and as new databases become available, new clas-
sifiers are added. This scheme ensures that instances, particularly
from new classes, are learned efficiently, since these instances are
most likely to be misclassified by previous classifiers. Further-
more, since al classifiers are retained, previously learned infor-
mation isnot lost. Thefinal classification for each instance isthen
based on the weighted majority voting of all classifiers.

For each training instance (x;, v; ), the weight distribution up-
date rulefrom iteration t tot + 1 isgiven by

D _ Dt . Bt, If Ht(ml) = Yi,
= >:De(i) |1, otherwise

where H,(z;) isthe composite classifier, computed by the weighted
majority voting of all previous ¢ classifiers for the instance x;, D;
isthe weight distribution at the t" iteration, y; isthe desired clas-
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sification, and 0 < B; < 1 is percent error of misclassification of
thet*" classifier. For given ¢ classifiers, the weighted majority vot-
ing simply computes the class that receives the highest vote, from
voters (individua classifiers) whose votes are weighted according
to their individual performance. That is,

K
H, :argmaxz Z log(1/By) (5)
4 k=1t:H(z)=y

where K isthetotal number of databases used to train ¢ classifiers.
Alternatively, the inverse of the Mahalanobis distance between
each instance and the ! training dataset can also be used as the
weight of each classifier during voting. Instances with small Ma-
halanobis distances are likely to come from the database which
was used to train the current classifier, and hence that classifier is
more likely to classify this instance correctly. Using the inverse of
the Mahalanobis distance to assign a different weight to each clas-
sifier, ensures that the classifier weights are dynamically updated,
which results in a better estimate of the optimal classifier weight
for each instance [3]. The disadvantage of this approach is that it
reguires the mean and covariance matrices of the training datasets
to be saved, increasing the space complexity of the algorithm. To
use a Mahalanobis distance based voting scheme, the term B; in

Equation 5 isreplaced by

1 _ 1 ©)
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where 1/ MWy, (t) is the weight of the t*" classifier for instance
x;, and m; and C; are the mean and covariance matrix of the
instances in the t** training dataset.

6. RESULTSAND DISCUSSION

In this section we present the results of applying NCT pre-
processing followed by LEARN++ classification of VOC patterns
in an incremental manner. The database consisted of 384 six-
dimensiona signals, 220 of which were used for training. This
database was divided into three training datasets S1 ~ S3 and one
test dataset, TEST. S: had instances from ET, OC, and TL, S
had instances mainly from TCE (and very few from the previous
three), and S3 had instances from XL (and very few from the previ-
ousfour). TEST set included instances from all classes. A single
hidden layer MLP was used as the base classifier. Note however
that LEARN++ is independent of the classifier, and can be used
with any supervised learning algorithm. Table 1 presents the data
distribution, and Table 2 presents the results.

Each column in Table 2 shows the performance of the com-
posite classifier obtained by computing the Mahal anobis weighted
majority of all classifiers generated up to that point. Each row
shows the performance on a particular dataset. During training
session one, only \S; was used for training (5 classifiers), during
session two, only S»> was used for training (10 classifiers), and so
on. As expected, the performances of the classifiers on their own
training data were very high. We note that the performance on
the TEST dataset improves as incremental learning progresses
and the system learns new classes. This is also expected, since
TEST set had instances from al five classes, and instances from
all classes were not introduced to classifiers until the last session.
We note that when the last five classifiers (which have seen in-
stances from all classes) were evaluated on test dataset, the per-
formance was around 60%, indicating that all training sessions

Table 1. Data class distribution for the VOC database.

ET | TCE| OC | XL | TL

S1 20 - 10 - 40
Sa 10 25 10 - 10
Ss3 10 15 10 | 40 | 10
TEST | 24 24 24 | 40 | 52

Table 2. Classification results on the VOC database.

Session — | Trainingl | Training2 | Training 3
Dataset | ©) (10) ©)
S 98.8 % 86.3 % 75.0 %
S - 89.9 % 90.1 %
S3 - - 94.1 %
TEST 56.7 % 64.0 % 86.6 %

are indeed necessary for the final classification. The performance
improvement on the TEST data as new datasets are introduced
demonstrates the incremental learning capability of the algorithm.

7. CONCLUDING REMARKS

In this paper we introduced an electronic nose system for
odor detection and identification along with various signal pro-
cessing and classification algorithms. In particular, nonlinear clus-
ter trandlation was introduced for increasing pattern separability,
and LEARN++ for incremental learning. We note that both al-
gorithms were also tested for identification of a larger number of
VOCs, individual components of mixtures of VOCs, aswell asnon
gas-sensing applications, and very promising results were obtained
[3]. This demonstrates the effectiveness and feasibility of the al-
gorithms for a broad spectrum of pattern separability and classi-
fication problems. Current work is in progress, where the voting
mechanism of LEARN++ is used to estimate the reliability of the
final classification and the confidence limits of the performance.
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