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ABSTRACT

We consider the problem of demodulating the multiuser symbols
in an uplink long-code CDMA systemin the presence of unknown
out-cell multiple-accessinterference and narrowband interference.
A novel blind Bayesian multiuser detector is derived based on the
Bayesian inference of all unknown quantities. The Gibbs sampler,
aMarkov chain Monte Carlo (MCMC) procedure, is then used for
Bayesian computation. Being soft-input and soft-output, the blind
Bayesian multiuser detector is designed to be apart of Turbo mul-
tiuser receiver, which refinesits processing based on the informa-
tion from the decoding stage.

1. INTRODUCTION

Existing CDMA standards(suchas|S-95 [1]) employ long spread-
ing codesonthereverselink, i.e., PN sequenceswith very long pe-
riods. However, to date, most research on blind multiuser detection
has focused on the more tractable short code case. In [2], we have
proposed a blind multiuser detector for an asynchronous CDMA
system empl oyinglong spreading sequencesin unknown multipath
channel with white Gaussian noise. In this paper, we consider the
blind multiuser detection problem when such a system are expos-
ing to the unknown interference, such as out-cell multiple-access
interference (OMAI) and narrowband interference (NBI).

The proposed blind Bayesian multiuser detector for interfered
CDMA system computesthe M AP estimation for themultiuser sym-
bols, based on the assumption that the total effect of white Gaus-
sian noise, OMAI and NBI can be modeled as colored Gaussian
noise with some unknown covariance matrix. Such a detector is
based on the Bayesian inference of all unknown parameters, and
Gibbs sampler, aMarkov chain Monte Carlo (MCMC) technique
is employed for Bayesian computation. Being soft-input and soft-
output in nature, this blind multiuser detector is easy to fit into the
Turbo receiver framework and exchangethe extrinsic information
with the MAP decoder to successively refine the performancein a
coded CDMA system.

2. SYSTEM DESCRIPTION

2.1. Signal Model

Consider a K -user uplink asynchronous CDMA system, employ-
ing normalized long pseudo-random spreading sequences, and sig-
naling through multipath channelswith white Gaussian noise and
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other unknown interference. The transmitted signal dueto the kth
user is given by
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where M denotesthelength of the dataframe; P isthe processing
gain; T' denotes the symbol interval; {cx,:(J) f;l is asignature
sequenceassigned to the kth user for the ith symbol; {6 (i)}, and
dr € [0,T) denoterespectively the symbol stream, and the initial
delay of the kth user’'s signal; ¢ is a normalized chip waveform.
Thekthuser’ssignal =, () propagatesthrough amultipath channel

whose impulse responseis given by
I
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where L isthe total number of physical pathsin the channel; 55
and 71,; are, respectively, the complex path gain and the delay of
the kth user’s {-th path.

At the receiver, the received signal r(t) is filtered by a chip-
matched filter and sampled at the chip-rate. Thereceived signal at
the matched filter output at timet = T + ¢T. isgivenby [2]
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where ¢ is the maximum delay spread among all usersin terms of
symbol intervals; k(1) is the discrete-time channel response for
the kth user at delay {T; v,(2) is the sampled noise at the matched
filter output. For convenience, define ¢, astheinitial delay for the
kth user; define L as the maximum channel delay among all user-
s. Based on the assumption that both ¢, and L are less than one
symbol interval, the received signal model in vector form can be
written as
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wherei = 0,1,..., M — 1; 7(i) £ [r1(i),m2(i) ..., 7p(i)]";
v(i) 2 [01(5), ..., ve(D)]"; he 2 [he(es+1), .., h(en+ L))"



It is easy to verify that C(") can be expressed as
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whichisdeterminedby theinitial delay and the spreading sequence,
and is assumed to be known throughout the paper.

2.2. Noise Model

Incellular DS-CDMA, the same uplink/downlink pair of frequency
bands are reused for each cell. Therefore, a signal transmitted in
one cell may cause interference in neighboring cells, resulting in
out-cell multiple-accessinterference (OMAL). In addition, narrow-
band communi cation systems sometimes can overlay with CDMA
systems, and thus cause narrowband interference (NBI) to the lat-
ter. Hence, the noise component »(z) in (4) may consist of white
Gaussian noise (WGN), OMAI and NBI.

The OMAI hasthe same structure asthein-cell CDMA signal-
s. When the total number of out-cell usersis large, by the central
limit theorem, OMAI signal vector vowa (i) approachesaGaussian
vector with zero mean and a covariance matrix. The NBI signal
is typically modeled as a correlated Gaussian process, hence the
NBI signal vector vyg () is Gaussianwith zero mean and acovari-
ancematrix. Combining these three components, the noise vectors
{v(7)} canbemodeled as col ored Gaussian vectorswith zero mean
and a covariance matrix, denoted by 3.

2.3. System Model

Now, we consider the problem of blind multiuser detection for the
above asynchronousuplink CDMA system. To resolve the phase
ambiguity, which isinherent in any blind receiver we differential-
ly encoding the BPSK symbols {a (1) }72 7" to yield the symbol
stream {by (1) } 12
mitted through a muIt| path channel A (m). The received signals
aregiven by (4).

DefineY 2 {r(0),7(1),...,7(M — 1)}, definetheapriori
LLR of the databit ax(¢) as px(i). In Section 3, we consider the
estimation the a posteriori probabilities of the multiuser bits

Plag(t) =+1|Y], (6)

based onthereceivedsignasY’, thesignal structure(4) and the pri-
or information {px (i) 1 tii—s» without knowing the channel re-

sponse { hx, }1_, and the noise covariance matrix 3. The prior in-
formation {pk( )} can be set to zero when there is no prior infor-
mation available, when such adetector isfit into the Turbo receiver,
this prior information isthe extrinsic information delivered by the
channel decoder from last iteration.

. Eachsymbol b (¢) |sthen modulated andtrans-

3. BLIND BAYESIAN MULTIUSER DETECTION

In this section, we develop the blind Bayesian multiuser detector
for colored Gaussian noise. It is assumed that »(:) in (4) have a
complex joint Gaussian distribution, i.e.,

plo(i)] = <M> exp (—0" () SV 0(@) . (7)
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3.1. GibbsSampler

To the problem of joint sequencedetection and channel estimation,
recent paper [3] has shown that Gibbs sampler, a blind Bayesian
approach, is a very powerful Bayesian solution. Let @ = [61, 62,
84])" be avector of unknown parameters, Y be the observed
data. Algorithmically, we can describe the Gibbs sampler as fol-
lows:
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It isknown that under regularity conditions, [4],
e Thedistribution of 8™ convergesgeometrically to p[@ | Y],

asn — oo.
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mtegrablefunctlon f.

3.2. Prior Distributions

The unknown quantities in this case are (H, = ™', B), which are
assumed to be independent with each other. Next, we specify the
prior distributions.

1. For theunknown channel  ;,, acomplex Gaussianprior dis-
tribution is assumed,

plhi] ~ Ne(Rio, Tko). 9

Note that large value of X, correspondsto lessinforma:
tive prior.
2. For theinverseof noisecovariancematrix =, an complex
Wishart distribution [5] isassumed, i.e.,

P ~ W(ET m), (10)

Small valuesof m and ¥ correspondto lessinformative pri-
or. Accordingto [5], arandom matrix with aWishart distri-
bution with m degreesof freedom (10) can be generated by
St ul, where {u; } arei.i.d. Gaussian random vec-
tors with zero mean and covariance & !

3. Thedata bit wquence b isaMarkov chain, encoded from

{ax(1)}727 . Its prior distribution can be expressed easily
from the prlor distribution of ax (7).



3.3. Conditional Posterior Distributions

The following conditional posterior distributions are required by
the blind Bayesian multiuser detector.

1. Theconditional distribution of the kth user’ schannel response
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2. The conditional distribution of the inverse of noise covari-
ance matrix ! given H, B,andY is
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3. Theconditional distribution of the data bit b (¢) given H,

371, By, andY canbeobtained from [where B ; 2 B\
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3.4. GibbsProcedure

Using the above conditional posterior distributions, the Gibbs sam-
pling implementation of the blind Bayesian multiuser detector pro-
ceedsiteratively asfollows. Giventheinitial valuesof theunknown
quantities { H(®), =% B(®} drawn from their prior distribu-
tions,andforn =1,2,...

1. Draw B{"™ fromp[hx |[H* ™, =711 B~ ¥ giv-
en by (11);

2. Draw =1 fromp[Z

m—l—M),
(12)

~HH™, B, Y] givenby (12);

3. For:=0,1,..., M —1
Fork=1,2,..., K
Draw 5. (1) from P[bx (1) |[H, £~ B{"=Y v giv-
enby (13).

To ensure convergence, the above procedureis usualy carried
out for (ng + V) iterations and samplesfrom the last V iterations
are used to calculate the Bayesian estimates for unknown param-
eters. By the second convergence property mentioned before, we
get

ng+N
Elax(i) Z YA —1). (14

n=ng+1

The posterior distribution p[ax(¢) = +1|Y’] can be easily com-
puted from (14).

4. BLIND TURBO MULTIUSER DETECTOR

We consider employing iterative joint multiuser detection and de-
coding toimprove the performance of the blind Bayesian multiuser
detector in acoded CDMA system. Becauseit utilizesthea priori
symbol probabilities, and it producessymbol a posteriori probabil-
ities, the blind Bayesian multiuser detector developedin this paper
iswell suited for iterative (Turbo) processing.

The Turbo receiver consists of two stages: the blind Bayesian
multiuser detector followed by asoft-input soft-output channel de-
coder [6]. The two stages are separated by deinterleavers and in-
terleavers. A receiver structureisshownin Figure 1. Theextrinsic
information provided by multiuser detector is reverse interleaved
andfedinto the channel decoder asprior information. Theextrinsic
information delivered by decodersisinterleaved andfed back tothe
multiuser detector as prior information for the next iteration.
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Fig. 1. Turbo multiuser receiver.

5. SIMULATION RESULTS

We consider a CDMA system with processinggain P = 10. The
long spreading sequencesof all usersare generated randomly. The
datablock sizefor each user is M = 101; the number of path for
each user is . = 3; the transmitter delay ¢, is generated randomly
with the restriction « < P. For each data block, the Gibbs sam-
pling is performed for 100 iterations, with thefirst 50 iterations as
the “burning-in” period, i.e., no = N = 50 in (14). The out-cell
multiple-accessinterference (OMAI) and narrowband interference
(NBI) is simulated as interference. For convenience, we denote
SNR as the in-cell user signal to WGN ratio; denote SIR as the
in-cell user signal to NBI ratio; denote K and K as the number
of in-cell and out-cell usersrespectively. The NBl ismodeled asa
2nd order AR model with coefficients (1.8, —0.81). The OMAI is
generated with energy 12dB below thein-cell user.
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Fig. 2. Samplesdrawn by the Gibbs sampler with K = 3, K’ =
18; for eachin-cell user, SNR = 20dB and SIR = —15dB.

1) Convergence behavior of the Gibbs sampler: In Figure 2,
we plot thefirst 100 samplesdrawn by the Gibbssampler of i, and
=7'(1,2). The correspondingtrue valuesof —h; and =7 (1,2)
are also shown in the same figure with dashed lines. The Gibbs
sampler reachesconvergencewithinthefirst several iterations. The
channel responsesamplesconvergesto —h ;. or k. randomly dueto
the phase ambiguity. It isseenthat 7' (1, 2) isfar from 0, which
indicatesthat the noise covariance matrix is not diagonal any more
with the existence of OMAI and NBI.

2) Performanceof the blind Bayesian multiuser detector: Fig-
ure 3 comparethe performance of the proposed the blind Bayesian
multiuser detector assuming colored Gaussian noise (B>MUD-C)
with other two detection scheme: RAKE receiver with perfect chan-
nel knowledge; and the blind Bayesian multiuser detector assum-
ing white Gaussian noise (B2MUD-W) derivedin [2]. The bit er-
ror rate of {ax(¢)} is plotted with the change of SIR for the three
receiver scheme. It is seen that with highly correlated noise, both
RAKE receiver and BZMUD-W fail to work, but B>MUD-C can
achievevery good performance.

3) Performance of Turbo multiuser receiver: In a coded CD-
MA system, the channel codeis set to arate of £, constraint length-
5 convolutional code(with generators23, 35 inoctal notation). The
interleaver isgeneratedrandomly andfixedfor al simulations. The
bit error rate of the codebits {ax (¢)} at the output of the multiuser
detector is averaged among al the users, and is plotted for thefirst
threeiterationsin Figure 4. It is seen that by incorporating the ex-
trinsic information provided by the channel decoders, the proposed
blind Bayesianmultiuser detector achievessignificant performance
improvement by the Turbo procedure.

6. CONCLUSION

Wehaveproposedablind Turbo multiuser receiver for asynchronous
CDMA system employing long spreading sequencesin the pres-
enceof unknown out-cell multiple-accessinterference and narrow-
band interference. A novel blind Bayesian multiuser detector is
developed for joint multiuser detection and differential decoding,
which is “soft-input soft-output” in nature to fit into the proposed
Turbo multiuser receiver framework. Finaly, we have provided
simulation examples to demonstrate the effectiveness of the pro-
posed techniques.
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Fig. 3. Performance of blind Bayesian multiuser detector in col-
ored Gaussiannoisewith K = 3, K’ = 18 andfixed SNR = 15dB
for all in-cell users.
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Fig. 4. Performance of blind Turbo multiuser receiver with K = 3,
K' =18, (a) withfixed SNR = 15dB for al in-cell users, (b) with
fixed SIR = —20dB for al in-cell users.
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